Random field-union intersection tests for EEG/MEG imaging

被引:30
作者
Carbonell, F
Galán, L
Valdés, P
Worsley, K
Biscay, RJ
Díaz-Comas, L
Bobes, MA
Parra, M
机构
[1] Inst Cibernet Matemat & Fis, Dept Sistemas Adaptat, Havana 10400, Cuba
[2] Cuban Neurosci Ctr, Havana 10400, Cuba
[3] McGill Univ, Montreal, PQ, Canada
[4] Univ Havana, Havana, Cuba
关键词
event-related potentials; Random Fields; Union Intersection test; Hotelling's T-2; Global Field Power; average reference; EEG/MEG Source Analysis;
D O I
10.1016/j.neuroimage.2004.01.020
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Electrophysiological (EEG/MEG) imaging challenges statistics by providing two views of the same spatiotemporal data: topographic and tomographic. Until now, statistical tests for these two situations have developed separately. This work introduces statistical tests for assessing simultaneously the significance of spatiotemporal event-related potential/event-related field (ERP/ERF) components and that of their sources. The test for detecting a component at a given time instant is provided by a Hotelling's T-2 statistic. This statistic is constructed in such a manner to be invariant to any choice of reference and is based upon a generalized version of the average reference transform of the data. As a consequence, the proposed test is a generalization of the well-known Global Field Power statistic. Consideration of tests at all time instants leads to a multiple comparison problem addressed by the use of Random Field Theory (RFT). The Union-Intersection (UI) principle is the basis for testing hypotheses about the topographic and tomographic distributions of such ERP/ERF components. The performance of the method is illustrated with actual EEG recordings obtained from a visual experiment of pattern reversal stimuli. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:268 / 276
页数:9
相关论文
共 26 条
[1]  
Adler R. J., 1981, GEOMETRY RANDOM FIEL
[2]  
[Anonymous], 1979, Multivariate analysis
[3]  
AUNON JI, 1981, CRC CR REV BIOM ENG, V5, P323
[4]   AN ALTERNATIVE METHOD FOR SIGNIFICANCE TESTING OF WAVE-FORM DIFFERENCE POTENTIALS [J].
BLAIR, RC ;
KARNISKI, W .
PSYCHOPHYSIOLOGY, 1993, 30 (05) :518-524
[5]   3D statistical parametric mapping of EEG source spectra by means of Variable Resolution Electromagnetic Tomography (VARETA) [J].
Bosch-Bayard, J ;
Valdés-Sosa, P ;
Virues-Alba, T ;
Aubert-Vázquez, E ;
John, ER ;
Harmony, T ;
Riera-Díaz, J ;
Trujillo-Barreto, N .
CLINICAL ELECTROENCEPHALOGRAPHY, 2001, 32 (02) :47-61
[6]  
Cao J, 1999, ANN STAT, V27, P925
[7]   Dynamic statistical parametric mapping: Combining fMRI and MEG for high-resolution imaging of cortical activity [J].
Dale, AM ;
Liu, AK ;
Fischl, BR ;
Buckner, RL ;
Belliveau, JW ;
Lewine, JD ;
Halgren, E .
NEURON, 2000, 26 (01) :55-67
[8]   OBJECTIVE RESPONSE DETECTION [J].
DOBIE, RA .
EAR AND HEARING, 1993, 14 (01) :31-35
[9]   SPECTRAL-ANALYSIS OF THE EEG - SOME FUNDAMENTALS REVISITED AND SOME OPEN PROBLEMS [J].
DUMERMUTH, G ;
MOLINARI, L .
NEUROPSYCHOBIOLOGY, 1987, 17 (1-2) :85-99
[10]   A multivariate analysis of evoked responses in EEG and MEG data [J].
Friston, KJ ;
Stephan, KM ;
Heather, JD ;
Frith, CD ;
Ioannides, AA ;
Liu, LC ;
Rugg, MD ;
Vieth, J ;
Keber, H ;
Hunter, K ;
Frackowiak, RSJ .
NEUROIMAGE, 1996, 3 (03) :167-174