Research on the relationship between air quality and economy development in major cities of China

被引:6
作者
Ma, Xin [1 ]
Ge, Rubing [2 ]
Zhang, Li [3 ]
机构
[1] North China Univ Water Resources & Elect Power, Zhengzhou, Peoples R China
[2] Chinese Acad Sci, Inst Urban Environm, Xiamen, Peoples R China
[3] North China Univ Water Resources & Elect Power, Sch Management & Econ, Zhengzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Environmental management; Classification; Neural nets; POLLUTION;
D O I
10.1108/K-07-2013-0146
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Purpose - The purpose of this paper is to build a support vector machine (SVM) model to evaluate the city air quality level, using the three main air pollutants selected as evaluation index. Design/methodology/approach - PM10, SO2, NO2 are the most important three air pollutants and their concentration data are selected as the influencing factor. And the SVM model is build and used to evaluate the air quality level of 29 major cities in China 2011. The cross- validation is adopted to select optimal penalty parameters and optimal kernel function, and the classification accuracies achieved under different normalization methods and kernel functions are compared in the end. Findings - The study found, the parameters and kernel functions chosen by the SVM model have influence on the model's prediction accuracy. Through continuous optimization of model parameters, finally it is found that the model performs better with [0, 1] normalization method and RBF kernel function. It proves that SVM classification model is effective in dealing with the problem of city air quality evaluation. Practical implications - The result of this study shows that the SVM classification model can be well applied to predict the city air quality level by using air pollutants concentration data as evaluation index. It can help the government and relevant department issue corresponding environmental policy and environmental protection measures. Originality/value - The qualitative and quantitative study method are combined in this paper, on the basis of predecessors' research results, as well as careful analysis to select evaluation index. The SVM classification model build is simulated by using Matlab technique, beyond comparing the accuracy, its outcomes and its efficiency in classification are demonstrated.
引用
收藏
页码:1224 / 1236
页数:13
相关论文
共 23 条
[1]  
Christianini N., 2000, INTRO SUPPORT VECTOR, P189
[2]   The health benefits of air pollution control in Delhi [J].
Cropper, ML ;
Simon, NB ;
Alberini, A ;
Arora, S ;
Sharma, PK .
AMERICAN JOURNAL OF AGRICULTURAL ECONOMICS, 1997, 79 (05) :1625-1629
[3]   Estimation of economic costs of particulate air pollution from road transport in China [J].
Guo, X. R. ;
Cheng, S. Y. ;
Chen, D. S. ;
Zhou, Y. ;
Wang, H. Y. .
ATMOSPHERIC ENVIRONMENT, 2010, 44 (28) :3369-3377
[4]   USE OF TOBACCO CULTIVARS AS BIOLOGICAL INDICATORS OF AMBIENT OZONE POLLUTION - AN ANALYSIS OF EXPOSURE-RESPONSE RELATIONSHIPS [J].
KRUPA, SV ;
MANNING, WJ ;
NOSAL, M .
ENVIRONMENTAL POLLUTION, 1993, 81 (02) :137-146
[5]  
Ma J., 2012, 2011 CHINA STAT YB
[6]   A SVM-based model for predicting distribution of the invasive tree Miconia calvescens in tropical rainforests [J].
Pouteau, Robin ;
Meyer, Jean-Yves ;
Stoll, Benoit .
ECOLOGICAL MODELLING, 2011, 222 (15) :2631-2641
[7]  
Shi F., 2010, NEURAL NETWORK ANAL
[8]  
Shi Z.Y., 2006, PROTECTION XINJIANG, V28, P36
[9]   Streamflow forecasting by SVM with quantum behaved particle swarm optimization [J].
Sudheer, Ch ;
Anand, Nitin ;
Panigrahi, B. K. ;
Mathur, Shashi .
NEUROCOMPUTING, 2013, 101 :18-23
[10]  
Tao C., 2006, METEOROLOGICAL MONTH, V32, P61