Least squares, preliminary test and Stein-type estimation in general vector AR(p) models

被引:6
作者
Ahmed, SE
Basu, AK
机构
[1] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
[2] Univ Calcutta, Dept Stat, Calcutta 700019, W Bengal, India
关键词
vector autoregressive multivariate least squares estimators; asymptotic bias; asymptotic distributional risk; shrinkage estimators; preliminary test estimators; local alternatives;
D O I
10.1111/1467-9574.00125
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
in the general vector autoregressive process AR(p), multivariate least square estimation (LSE)/maximum likelihood estimation (MLE) of a subset of the parameters is considered when the complementary subset is suspected to be redundant. This may be viewed as a special case of linear constraints of autoregressive parameters. We incorporate this nonsample information in the estimation process and propose preliminary test and Stein-type estimators for the target subset of parameters. Under local alternatives their asymptotic properties are investigated and compared with those of unrestricted and restricted LSE. The dominance picture of the estimators is presented.
引用
收藏
页码:47 / 66
页数:20
相关论文
共 20 条
[1]   ESTIMATION STRATEGIES FOR THE INTERCEPT VECTOR IN A SIMPLE LINEAR MULTIVARIATE NORMAL REGRESSION-MODEL [J].
AHMED, SE ;
SALEH, AKME .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1990, 10 (03) :193-206
[2]   LARGE-SAMPLE POOLING PROCEDURE FOR CORRELATION [J].
AHMED, SE .
STATISTICIAN, 1992, 41 (04) :425-438
[3]   IMPROVED ESTIMATION IN A MULTIVARIATE REGRESSION-MODEL [J].
AHMED, SE .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1994, 17 (05) :537-554
[4]   EFFICIENCIES OF TESTS AND ESTIMATORS FOR P-ORDER AUTOREGRESSIVE PROCESSES WHEN THE ERROR DISTRIBUTION IS NON-NORMAL [J].
AKRITAS, MG ;
JOHNSON, RA .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1982, 34 (03) :579-589
[5]  
BANCROFT TA, 1977, INT STAT REV, V45, P117
[6]   On biases in estimation due to the use of preliminary tests of significance [J].
Bancroft, TA .
ANNALS OF MATHEMATICAL STATISTICS, 1944, 15 :190-204
[7]  
Brockwell P. J., 1991, TIME SERIES THEORY M
[8]   USE OF A REGRET FUNCTION TO SET SIGNIFICANCE POINTS IN PRIOR TESTS OF ESTIMATION [J].
BROOK, RJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1976, 71 (353) :126-131
[9]   A NOTE ON ADMISSIBILITY OF POOLING IN ANALYSIS OF VARIANCE [J].
COHEN, A .
ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (05) :1744-&
[10]  
Giles JA., 1993, J ECON SURV, V7, P145, DOI [10.1111/j.1467-6419.1993.tb00163.x, DOI 10.1111/J.1467-6419.1993.TB00163.X]