Kernel PCA for novelty detection

被引:512
作者
Hoffmann, Heiko [1 ]
机构
[1] Max Planck Inst Human Cognit & Brain Sci, D-80799 Munich, Germany
关键词
kernel method; novelty detection; PCA; handwritten digit; breast cancer;
D O I
10.1016/j.patcog.2006.07.009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Kernel principal component analysis (kernel PICA) is a non-linear extension of PCA. This study introduces and investigates the use of kernel PCA for novelty detection. Training data are mapped into an infinite-dimensional feature space. In this space, kernel PCA extracts the principal components of the data distribution. The squared distance to the corresponding principal subspace is the measure for novelty. This new method demonstrated a competitive performance on two-dimensional synthetic distributions and on two real-world data sets: handwritten digits and breast-cancer cytology. (c) 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:863 / 874
页数:12
相关论文
共 27 条
[1]  
Blake C.L., 1998, UCI repository of machine learning databases
[2]  
Burges C. J. C., 1996, P 13 INT C MACH LEAR, P71
[3]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[4]   Approaches for automated detection and classification of masses in mammograms [J].
Cheng, HD ;
Shi, XJ ;
Min, R ;
Hu, LM ;
Cai, XR ;
Du, HN .
PATTERN RECOGNITION, 2006, 39 (04) :646-668
[5]  
Diamantaras KI, 1996, Principal Component Neural Networks: Theory and Applications
[6]  
LU CD, 2004, P INT C MACH LEARN C, V5, P3084
[7]  
Lusted Lee B., 1968, INTRO MED DECISION M
[8]   Novelty detection: a review - part 2: neural network based approaches [J].
Markou, M ;
Singh, S .
SIGNAL PROCESSING, 2003, 83 (12) :2499-2521
[9]   Novelty detection: a review - part 1: statistical approaches [J].
Markou, M ;
Singh, S .
SIGNAL PROCESSING, 2003, 83 (12) :2481-2497
[10]  
Mika S, 1999, ADV NEUR IN, V11, P536