Cross-separatrix flux in time-aperiodic and time-impulsive flows

被引:18
作者
Balasuriya, Sanjeeva [1 ]
机构
[1] Connecticut Coll, Dept Math, New London, CT 06320 USA
关键词
D O I
10.1088/0951-7715/19/12/003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A theory for the fluid flux generated across heteroclinic separatrices under the influence of time-aperiodic perturbations is presented. The flux is explicitly defined as the amount of fluid transferred per unit time, and its detailed time-dependence monitored. The perturbations are allowed to be significantly discontinuous in time, including for example impulsive (Dirac delta type) discontinuities. The flux is characterized in terms of time-varying separatrices, with easily computable formulae (directly related to Melnikov functions) provided.
引用
收藏
页码:2775 / 2795
页数:21
相关论文
共 29 条
[1]  
Adams R, 1978, Sobolev spaces
[2]   Approach for maximizing chaotic mixing in microfluidic devices [J].
Balasuriya, S .
PHYSICS OF FLUIDS, 2005, 17 (11) :1-4
[3]   Viscous perturbations of vorticity-conserving flows and separatrix splitting [J].
Balasuriya, S ;
Jones, CKRT ;
Sandstede, B .
NONLINEARITY, 1998, 11 (01) :47-77
[4]   Direct chaotic flux quantification in perturbed planar flows: General time-periodicity [J].
Balasuriya, S .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2005, 4 (02) :282-311
[5]   Optimal perturbation for enhanced chaotic transport [J].
Balasuriya, S .
PHYSICA D-NONLINEAR PHENOMENA, 2005, 202 (3-4) :155-176
[6]  
Coppel W.A., 1978, DICHOTOMIES STABILIT
[7]   Poincare-Melnikov-Arnold method for analytic planar maps [J].
Delshams, A ;
Ramirez-Ros, R .
NONLINEARITY, 1996, 9 (01) :1-26
[9]   Viscous perturbations of marginally stable Euler flow and finite-time Melnikov theory [J].
Grenier, E ;
Jones, CKRT ;
Rousset, F ;
Sandstede, B .
NONLINEARITY, 2005, 18 (02) :465-483
[10]  
Guckenheimer J., 1983, NONLINEAR OSCILLATIO, V42