Mixed finite element methods for the Signorini problem with friction

被引:25
作者
Baillet, Laurent
Sassi, Taoufik
机构
[1] Univ Caen, Lab Math Nicolas Oresme, CNRS, UMR 6139, F-14032 Caen, France
[2] Inst Natl Sci Appl, Lab Mecan Contacts & Solides, CNRS, UMR 5514, F-69621 Villeurbanne, France
关键词
mixed finite element methods; unilateral contact problems with friction; a priori error estimates;
D O I
10.1002/num.20147
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we propose and study different mixed variational methods in order to approximate the Signorini problem with friction using finite elements. The discretized normal and tangential constraints at the contact interface are expressed by using either continuous piecewise linear or piecewise constant Lagrange multipliers in the saddle-point formulation. A priori error estimates are established and several numerical examples corresponding to the different choices of the discretized normal and tangential constraints are carried out. (C) 2006 Wiley Periodicals, Inc.
引用
收藏
页码:1489 / 1508
页数:20
相关论文
共 25 条
  • [1] Adams A, 2003, SOBOLEV SPACES
  • [2] AGOUZAL A, 1995, MATH MOD ANAL NUM, V29, P749
  • [3] Amontons G., 1699, MEMOIRES ACAD ROYALE, P206
  • [4] [Anonymous], MONOGR STUD MATH
  • [5] [Anonymous], 2002, STUDIES ADV MATH
  • [6] Numerical implementation of different finite element methods for contact problems with friction.
    Baillet, L
    Sassi, T
    [J]. COMPTES RENDUS MECANIQUE, 2003, 331 (11): : 789 - 796
  • [7] BAILLET L, 1999, NUMISHEET 99 BES FRA, P209
  • [8] About the mortar finite element method for non-local Coulomb law in contact problems
    Bayada, G
    Chambat, M
    Lhalouani, K
    Sassi, T
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (12): : 1323 - 1328
  • [9] Hybrid finite element methods for the Signorini problem
    Ben Belgacem, F
    Renard, Y
    [J]. MATHEMATICS OF COMPUTATION, 2003, 72 (243) : 1117 - 1145
  • [10] BREZZI F, 1977, NUMER MATH, V28, P431, DOI 10.1007/BF01404345