Statistical shape features for content-based image retrieval

被引:15
作者
Brandt, S
Laaksonen, J
Oja, E
机构
[1] Helsinki Univ Technol, Lab Computat Engn, FIN-02015 Espoo, Finland
[2] Helsinki Univ Technol, Lab Comp & Informat Sci, FIN-02015 Espoo, Finland
基金
芬兰科学院;
关键词
feature extraction; content-based image retrieval; statistical shape description; relevance feedback;
D O I
10.1023/A:1020689721567
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this article the use of statistical, low-level shape features in content-based image retrieval is studied. The emphasis is on such techniques which do not demand object segmentation. PicSOM, the image retrieval system used in the experiments, requires that features are represented by constant-sized feature vectors for which the Euclidean distance can be used as a similarity measure. The shape features suggested here are edge histograms and Fourier-transform-based features computed from the image after edge detection in Cartesian or polar coordinate planes. The results show that both local and global shape features are important clues of shapes in an image.
引用
收藏
页码:187 / 198
页数:12
相关论文
共 25 条
[1]  
[Anonymous], SPRINGER SERIES INFO
[2]  
BEIGI M, 1998, STORAGE RETRIEVAL IM
[3]  
BRANDT S, 1999, THESIS HELSINKI U TE
[4]  
BRANDT S, 2000, P 15 INT C PATT REC, V2, P1066
[5]  
DELBIMBO A, 1999, VISUAL INFORMATION R
[6]  
FLICKNER M, 1995, IEEE COMPUT, V28, P23, DOI DOI 10.1109/2.410146
[7]  
GUNTHER NJ, 2000, HPL2000162
[8]  
Huang T.S., 1996, P 33 ANN CLIN LIB AP
[9]   Image retrieval using color and shape [J].
Jain, AK ;
Vailaya, A .
PATTERN RECOGNITION, 1996, 29 (08) :1233-1244
[10]  
KOIKKALAINEN P, 1994, 11 EUR C ART INT, P211