Stochastic discrete scale invariance

被引:23
作者
Borgnat, P [1 ]
Flandrin, P
Amblard, PO
机构
[1] Ecole Normale Super Lyon, Phys Lab, CNRS, UMR 5672, F-69364 Lyon 07, France
[2] ENSIEG, Lab Images & Signaux, CNRS, UMR 5083, F-38402 St Martin Dheres, France
关键词
cyclostationary processes; discrete scale invariance; Lamperti's theorem; Mellin transformation;
D O I
10.1109/LSP.2002.800504
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A definition of stochastic discrete scale invariance (DSI) is proposed and its properties studied. It is shown how the Lamperti transformation, which transforms stationarity in self-similarity, is also a means to connect processes deviating from stationarity and processes which are not exactly scale invariant: in particular we interpret DSI as the image of cyclostationarity. This theoretical result is employed to introduce a multiplicative spectral representation of DSI processes based on the Mellin transform, and preliminary remarks are given about estimation issues.
引用
收藏
页码:181 / 184
页数:4
相关论文
共 14 条
[1]   ON THE WEIERSTRASS-MANDELBROT FRACTAL FUNCTION [J].
BERRY, MV ;
LEWIS, ZV .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1980, 370 (1743) :459-484
[2]   THE SCALE REPRESENTATION [J].
COHEN, L .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (12) :3275-3292
[3]  
Flandrin P., 1990, Signal Processing V. Theories and Applications. Proceedings of EUSIPCO-90, Fifth European Signal Processing Conference, P149
[4]   CHARACTERIZATION OF CYCLOSTATIONARY RANDOM SIGNAL PROCESSES [J].
GARDNER, WA ;
FRANKS, LE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1975, 21 (01) :4-14
[5]  
Gladyshev E.G., 1963, TH PROBABILITY APPL, V8, P173, DOI [10.1137/1108016, DOI 10.1137/1108016]
[6]  
Gray H.L., 1988, J. Time Series An, V9, P133
[7]  
Lamperti JW, 1962, T AM MATH SOC, V104, P62, DOI [10.1090/S0002-9947-1962-0138128-7, DOI 10.1090/S0002-9947-1962-0138128-7]
[8]   Linear estimation of self-similar processes via Lamperti's transformation [J].
Nuzman, CJ ;
Poor, HV .
JOURNAL OF APPLIED PROBABILITY, 2000, 37 (02) :429-452
[9]   Computationally efficient algorithms for cyclic spectral analysis [J].
Roberts, Randy S. ;
Brown, William A. ;
Loomis, Herschel H., Jr. .
IEEE SIGNAL PROCESSING MAGAZINE, 1991, 8 (02) :38-49
[10]  
Saleur H, 1996, J PHYS I, V6, P327, DOI 10.1051/jp1:1996160