The KNAT2 homeodomain protein interacts with ethylene and cytokinin signaling

被引:83
作者
Hamant, O
Nogué, F
Belles-Boix, E
Jublot, D
Grandjean, O
Traas, J
Pautot, V
机构
[1] INRA, Biol Cellulaire Lab, F-78026 Versailles, France
[2] INRA, Genet & Ameliorat Plantes Stn, F-78026 Versailles, France
关键词
D O I
10.1104/pp.004564
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Using a transgenic line that overexpresses a fusion of the KNAT2 (KNOTTED-like Arabidopsis) homeodomain protein and the hormone-binding domain of the glucocorticoid receptor (GR), we have investigated the possible relations between KNAT2 and various hormones. Upon activation of the KNAT2-GR fusion, we observed a delayed senescence of the leaves and a higher rate of shoot initiation, two processes that are also induced by cytokinins and inhibited by ethylene. Furthermore, the activation of the KNAT2-GR fusion induced lobing of the leaves. This feature was partially suppressed by treatment with the ethylene precursor 1-aminocyclopropane-1-carboxylic acid, or by the constitutive ethylene response ctr1 mutation. Conversely, some phenotypic traits of the ctr1 mutant were suppressed by the activation of the KNAT2-GR fusion. These data suggest that KNAT2 acts synergistically with cytokinins and antagonistically with ethylene. In the shoot apical meristem, the KNAT2 gene is expressed in the L3 layer and the rib zone. 1-Aminocyclopropane-1-carboxylic acid treatment restricted the KNAT2 expression domain in the shoot apical meristem and reduced the number of cells in the L3. The latter effect was suppressed by the activation of the KNAT2-GR construct. Conversely, the KNAT2 gene expression domain was enlarged in the ethylene-resistant etr1-1 mutant or in response to cytokinin treatment. These data suggest that ethylene and cytokinins act antagonistically in the meristem via KNAT2 to regulate the meristem activity.
引用
收藏
页码:657 / 665
页数:9
相关论文
共 49 条
[1]   EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis [J].
Alonso, JM ;
Hirayama, T ;
Roman, G ;
Nourizadeh, S ;
Ecker, JR .
SCIENCE, 1999, 284 (5423) :2148-2152
[2]  
Barton MK, 1998, CURR OPIN PLANT BIOL, V1, P37
[3]   Interactions between abscisic acid and ethylene signaling cascades [J].
Beaudoin, N ;
Serizet, C ;
Gosti, F ;
Giraudat, J .
PLANT CELL, 2000, 12 (07) :1103-1115
[4]   Ethylene: A gaseous signal molecule in plants [J].
Bleecker, AB ;
Kende, H .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2000, 16 :1-+
[5]   Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis [J].
Byrne, ME ;
Barley, R ;
Curtis, M ;
Arroyo, JM ;
Dunham, M ;
Hudson, A ;
Martienssen, RA .
NATURE, 2000, 408 (6815) :967-971
[6]  
Byrne ME, 2002, DEVELOPMENT, V129, P1957
[7]   CYTOKININ ACTION IS COUPLED TO ETHYLENE IN ITS EFFECTS ON THE INHIBITION OF ROOT AND HYPOCOTYL ELONGATION IN ARABIDOPSIS-THALIANA SEEDLINGS [J].
CARY, AJ ;
LIU, WN ;
HOWELL, SH .
PLANT PHYSIOLOGY, 1995, 107 (04) :1075-1082
[8]   ARABIDOPSIS ETHYLENE-RESPONSE GENE ETR1 - SIMILARITY OF PRODUCT TO 2-COMPONENT REGULATORS [J].
CHANG, C ;
KWOK, SF ;
BLEECKER, AB ;
MEYEROWITZ, EM .
SCIENCE, 1993, 262 (5133) :539-544
[9]  
Chory J, 1991, Symp Soc Exp Biol, V45, P21
[10]   Organ formation at the vegetative shoot meristem [J].
Clark, SE .
PLANT CELL, 1997, 9 (07) :1067-1076