Determining the cutoff between background and relative base metal smelter contamination levels using multifractal methods

被引:75
作者
Sim, BL
Agterberg, FP
Beaudry, C
机构
[1] Geol Survey Canada, Ottawa, ON K1N 6N5, Canada
[2] Noranda Min & Explorat Inc, Rouyn Noranda, PQ J9X 1E2, Canada
[3] Univ Ottawa, Dept Geol, Ottawa, ON K1N 6N5, Canada
关键词
area-concentration method; EXCEL; 5.0; Flin Flon; humans; MAP INFO 4.1; multifractals; VERTICAL MAPPER 1.5; visual;
D O I
10.1016/S0098-3004(99)00064-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
For a specified, spatially distributed geoscience variable measure, log-log plots of contour interval versus cumulative contour area for all contours exceeding a specified contour value can provide insight into the nature of the multifractal spectrum; e.g. if there are sharp bends or breaks. These can be estimated graphically by plotting lines of best fit and finding their solution on a log-log graph of contour interval versus cumulative area per contour interval. The breakpoint between background and anomalous values is defined when the spectrum is relatively close to its minimum value. A new computer program using MAP INFO 4.1, VERTICAL MAPPER 1.5 and EXCEL 5.0 has been developed for the preceding method. As an example of application, variation in estimated background metal concentration cutoffs is illustrated using humus geochemistry in the vicinity of a base metal smelter near Flin Flon, Manitoba. Cutoffs between background and anomalous metal concentrations of copper, zinc and mercury are estimated using the multifractal area-concentration model. These metals return to background geochemical levels within approximately 142, 104 and 105 km from the source respectively. (C), 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1023 / 1041
页数:19
相关论文
共 22 条
[1]  
AGTERBERG F., 1995, International Geology Review, V37, P1, DOI DOI 10.1080/00206819509465388
[2]   Multifractal modeling of fractures in the Lac du Bonnet Batholith, Manitoba [J].
Agterberg, FP ;
Cheng, QM ;
Brown, A ;
Good, D .
COMPUTERS & GEOSCIENCES, 1996, 22 (05) :497-507
[3]  
AGTERBERG FP, 1994, QUANT GEO G, V6, P223
[4]  
[Anonymous], 1990, FRACTAL GEOMETRY
[5]  
BONHAMCARTER GF, 1997, P 3 ANN C IAMG, V2, P262
[6]  
CARR JR, 1995, NUMERICAL ANAL GEOLO
[7]  
CHENG Q, 1996, NONRENEWABLE RESOURC, V5, P117, DOI DOI 10.1007/BF02257585
[8]   THE SEPARATION OF GEOCHEMICAL ANOMALIES FROM BACKGROUND BY FRACTAL METHODS [J].
CHENG, QM ;
AGTERBERG, FP ;
BALLANTYNE, SB .
JOURNAL OF GEOCHEMICAL EXPLORATION, 1994, 51 (02) :109-130
[9]   Discrete multifractals [J].
Cheng, QM .
MATHEMATICAL GEOLOGY, 1997, 29 (02) :245-266
[10]   Multifractal modeling and spatial statistics [J].
Cheng, QM ;
Agterberg, FP .
MATHEMATICAL GEOLOGY, 1996, 28 (01) :1-16