Performance of Li-ion secondary batteries in low power, hybrid power supplies

被引:15
作者
Prakash, Shruti [1 ]
Mustain, William E. [2 ]
Kohl, Paul A. [1 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
[2] Univ Connecticut, Dept Chem Mat & Biomol Engn, Storrs, CT 06269 USA
关键词
Lithium ion battery; Hybrid power source; RECHARGEABLE LITHIUM BATTERIES; THIN-FILM LITHIUM; ELECTRODE MATERIAL; CATHODE MATERIAL; LINIO2; STATE; CELLS;
D O I
10.1016/j.jpowsour.2008.12.146
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Small, portable electronic devices need power supplies that have long life, high energy efficiency, high energy density, and can deliver short power bursts. Hybrid power sources that combine a high energy density fuel cell, or an energy scavenging device, with a high power secondary battery are of interest in sensors and wireless devices. However, fuel cells with low self-discharge have low power density and have a poor response to transient loads. A low capacity secondary lithium ion cell can provide short burst power needed in a hybrid fuel cell-battery power supply. This paper describes the polarization, cycling, and self-discharge of commercial lithium ion batteries as they would be used in the small, hybrid power source. The performance of 10 Li-ion variations, including organic electrolytes with LixV2O5 and LixMn2O4 cathodes and UPON electrolyte with a LiCoO2 cathode was evaluated. Electrochemical characterization shows that the vanadium oxide cathode cells perform better than their manganese oxide counterparts in every category. The vanadium oxide cells also show better cycling performance under shallow discharge conditions than UPON cells at a given current. However, the UPON cells show significantly lower energy loss due to polarization and self-discharge losses than the vanadium and manganese cells with organic electrolytes. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1184 / 1189
页数:6
相关论文
共 25 条
[1]   Thin-film lithium and lithium-ion batteries [J].
Bates, JB ;
Dudney, NJ ;
Neudecker, B ;
Ueda, A ;
Evans, CD .
SOLID STATE IONICS, 2000, 135 (1-4) :33-45
[2]   THIN-FILM RECHARGEABLE LITHIUM BATTERIES [J].
BATES, JB ;
DUDNEY, NJ ;
LUBBEN, DC ;
GRUZALSKI, GR ;
KWAK, BS ;
YU, XH ;
ZUHR, RA .
JOURNAL OF POWER SOURCES, 1995, 54 (01) :58-62
[3]   Electrolytes for advanced batteries [J].
Blomgren, GE .
JOURNAL OF POWER SOURCES, 1999, 81 :112-118
[4]   Origin of Self-discharge Mechanism in LiMn2O4-based Li-ion Cells: A Chemical and Electrochemical Approach [J].
Blyr, A. ;
Du Pasquier, A. ;
Amatucci, G. ;
Tarascon, J. -M. .
IONICS, 1997, 3 (5-6) :321-331
[5]   Self-discharge of LiMn2O4/C Li-ion cells in their discharged state -: Understanding by means of three-electrode measurements [J].
Blyr, A ;
Sigala, C ;
Amatucci, G ;
Guyomard, D ;
Chabre, Y ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (01) :194-209
[6]   RECHARGEABLE LINIO2 CARBON CELLS [J].
DAHN, JR ;
VONSACKEN, U ;
JUZKOW, MW ;
ALJANABY, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (08) :2207-2211
[7]   OMEGA-LIXV2O5 - A NEW ELECTRODE MATERIAL FOR RECHARGEABLE LITHIUM BATTERIES [J].
DELMAS, C ;
BRETHES, S ;
MENETRIER, M .
JOURNAL OF POWER SOURCES, 1991, 34 (02) :113-118
[8]   Addition of a thin-film inorganic solid electrolyte (Lipon) as a protective film in lithium batteries with a liquid electrolyte [J].
Dudney, NJ .
JOURNAL OF POWER SOURCES, 2000, 89 (02) :176-179
[9]  
GOZDZ AS, 1996, Patent No. 5296318
[10]   RELATIONSHIP BETWEEN NONSTOICHIOMETRY AND PHYSICAL-PROPERTIES IN LINIO2 [J].
HIRANO, A ;
KANNO, R ;
KAWAMOTO, Y ;
TAKEDA, Y ;
YAMAURA, K ;
TAKANO, M ;
OHYAMA, K ;
OHASHI, M ;
YAMAGUCHI, Y .
SOLID STATE IONICS, 1995, 78 (1-2) :123-131