Exploiting the Hessian matrix for content-based retrieval of volume-data features

被引:3
作者
Hladuvka, J [1 ]
Gröller, E [1 ]
机构
[1] Vienna Univ Technol, Inst Comp & Algorithms, A-1040 Vienna, Austria
关键词
volume visualization; sparse data; gradient; hessian matrix; eigensystem;
D O I
10.1007/s003710100141
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose an algorithm for content-based retrieval of representative subsets of volume data. Our technique is based on thresholding of the eigenvalues of the Hessian matrix. We compare our approach to feature detection based on the gradient magnitude and observe that our method allows the representation of volumes by a smaller amount of voxels. Practical applications of our method include fast volume display due to object-space oriented techniques, generation of preview data sets for web-based repositories, and the related progressive visualization over the network. For these applications, the size of the representative subset can be estimated automatically with respect to the bottleneck of the visualization system or a network bandwidth.
引用
收藏
页码:207 / 217
页数:11
相关论文
共 34 条
[1]  
CSEBFALVI B, 2001, THESIS VIENNA U TECH
[2]  
Frangi AF, 1998, LECT NOTES COMPUT SC, V1496, P130, DOI 10.1007/BFb0056195
[3]  
Gerstner T, 2001, SPRING EUROGRAP, P35
[4]  
Hladuvka J, 2001, W S C G ' 2001, VOLS I & II, CONFERENCE PROCEEDINGS, P124
[5]  
Hladuvka J, 2001, SPRING EUROGRAP, P203
[6]  
HLADUVKA J, 2001, DERIVATIVES EIGENSYS
[7]  
Hladuvka J., 2000, SPRING C COMP GRAPH, V16, P58
[8]  
HLADUVKA J, 2002, COMPUT GRAPH, V26
[9]  
HOPF M, 1999, P IEEE VISUAL, V10, P471
[10]  
HUANG J, 2000, OPEN SPLAT SOFTWARE