The Area of Horizons and the Trapped Region

被引:85
作者
Andersson, Lars [1 ,2 ]
Metzger, Jan [1 ,3 ]
机构
[1] Albert Einstein Inst, D-14476 Potsdam, Germany
[2] Univ Miami, Dept Math, Coral Gables, FL 33124 USA
[3] Stanford Univ, Stanford, CA 94305 USA
关键词
SURFACES;
D O I
10.1007/s00220-008-0723-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper considers some fundamental questions concerning marginally trapped surfaces, or apparent horizons, in Cauchy data sets for the Einstein equation. An area estimate for outermost marginally trapped surfaces is proved. The proof makes use of an existence result for marginal surfaces, in the presence of barriers, curvature estimates, together with a novel surgery construction for marginal surfaces. These results are applied to characterize the boundary of the trapped region.
引用
收藏
页码:941 / 972
页数:32
相关论文
共 25 条
[1]   Local existence of dynamical and trapping horizons - art. no. 111101 [J].
Andersson, L ;
Mars, M ;
Simon, W .
PHYSICAL REVIEW LETTERS, 2005, 95 (11)
[2]  
Andersson L., 2005, CURVATURE ESTIMATES
[3]  
[Anonymous], 2015, Elliptic Partial Differential Equations of Second Order. Classics in Mathematics
[4]  
[Anonymous], 1996, 2 ORDER PARABOLIC DI, DOI DOI 10.1142/3302
[5]   Dynamical horizons and their properties [J].
Ashtekar, A ;
Krishnan, B .
PHYSICAL REVIEW D, 2003, 68 (10)
[6]  
Ashtekar A, 2005, ADV THEOR MATH PHYS, V9, P1
[7]   Penrose inequality and apparent horizons [J].
Ben-Dov, I .
PHYSICAL REVIEW D, 2004, 70 (12) :124031-1
[8]   Spin flips and precession in black-hole-binary mergers [J].
Campanelli, Manuela ;
Lousto, Carlos O. ;
Zlochower, Yosef ;
Krishnan, Badri ;
Merritt, David .
PHYSICAL REVIEW D, 2007, 75 (06)
[9]   Examples of embedded minimal tori without area bounds [J].
Colding, TH ;
Minicozzi, WP .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1999, 1999 (20) :1097-1100
[10]   Compact embedded minimal surfaces of positive genus without area bounds [J].
Dean, B .
GEOMETRIAE DEDICATA, 2003, 102 (01) :45-52