Geometric quantum computation using nuclear magnetic resonance

被引:722
作者
Jones, JA
Vedral, V
Ekert, A
Castagnoli, G
机构
[1] Univ Oxford, Clarendon Lab, Ctr Quantum Computat, Oxford OX1 3PU, England
[2] Oxford Ctr Mol Sci, New Chem Lab, Oxford OX1 3QT, England
[3] Elsag, I-1615 Genoa, Italy
关键词
D O I
10.1038/35002528
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A significant development in computing has been the discovery(1) that the computational power of quantum computers exceeds that of Turing machines. Central to the experimental realization of quantum information processing is the construction of fault-tolerant quantum logic gates. Their operation requires conditional quantum dynamics, in which one sub-system undergoes a coherent evolution that depends on the quantum state of another sub-system(2); in particular, the evolving sub-system may acquire a conditional phase shift. Although conventionally dynamic in origin, phase shifts can also be geometric(3,4) Conditional geometric (or 'Berry') phases depend only on the geometry of the path executed, and are therefore resilient to certain types of errors; this suggests the possibility of an intrinsically fault-tolerant way of performing quantum gate operations. Nuclear magnetic resonance techniques have already been used to demonstrate both simple quantum information processing(5-9) and geometric phase shifts(10-12). Here we combine these ideas by performing a nuclear magnetic resonance experiment in which a conditional Berry phase is implemented, demonstrating a controlled phase shift gate.
引用
收藏
页码:869 / 871
页数:3
相关论文
共 21 条
[1]   Adiabatic quantum computation with Cooper pairs [J].
Averin, DV .
SOLID STATE COMMUNICATIONS, 1998, 105 (10) :659-664
[2]   CONDITIONAL QUANTUM DYNAMICS AND LOGIC GATES [J].
BARENCO, A ;
DEUTSCH, D ;
EKERT, A ;
JOZSA, R .
PHYSICAL REVIEW LETTERS, 1995, 74 (20) :4083-4086
[4]   Experimental implementation of fast quantum searching [J].
Chuang, IL ;
Gershenfeld, N ;
Kubinec, M .
PHYSICAL REVIEW LETTERS, 1998, 80 (15) :3408-3411
[5]   Nuclear magnetic resonance spectroscopy: An experimentally accessible paradigm for quantum computing [J].
Cory, DG ;
Price, MD ;
Havel, TF .
PHYSICA D-NONLINEAR PHENOMENA, 1998, 120 (1-2) :82-101
[6]   Ensemble quantum computing by NMR spectroscopy [J].
Cory, DG ;
Fahmy, AF ;
Havel, TF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (05) :1634-1639
[7]   UNIVERSALITY IN QUANTUM COMPUTATION [J].
DEUTSCH, D ;
BARENCO, A ;
EKERT, A .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1995, 449 (1937) :669-677
[8]  
Ernst R. R., 1987, PRINCIPLES NUCL MAGN
[9]   Bulk spin-resonance quantum computation [J].
Gershenfeld, NA ;
Chuang, IL .
SCIENCE, 1997, 275 (5298) :350-356
[10]   NMR frequency shift under sample spinning [J].
Goldman, M ;
Fleury, V ;
Gueron, M .
JOURNAL OF MAGNETIC RESONANCE SERIES A, 1996, 118 (01) :11-20