Phosphotyrosine-specific phosphatase PTP-SL regulates the ERK5 signaling pathway

被引:41
作者
Buschbeck, M [1 ]
Eickhoff, J [1 ]
Sommer, MN [1 ]
Ullrich, A [1 ]
机构
[1] Max Planck Inst Biochem, Dept Mol Biol, D-82152 Martinsried, Germany
关键词
D O I
10.1074/jbc.M202149200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The duration and the magnitude of mitogen-activated protein kinase (MAPK) activation specifies signal identity and thus allows the regulation of diverse cellular functions by the same kinase cascade. A tight and finely tuned regulation of MAPK activity is therefore critical for the definition of a specific cellular response. We investigated the role of tyrosine-specific phosphatases (PTPs) in the regulation of ERK5. Although unique in its structure, ERK5 is activated in analogy to other MAPKs by dual phosphorylation of threonine and tyrosine residues in its activation motif. In this study we concentrated on whether and how PTP-SL, a kinase-interacting motif-containing PTP, might be involved in the down-regulation of the ERK5 signal. We found that both proteins interact directly with each other in vitro and in intact cells, resulting in mutual modulation of their enzymatic activities. PTP-SL is a substrate of ERK5 and independent of phosphorylation binding to the kinase enhances its catalytic phosphatase activity. On the other hand, interaction with PTP-SL not only down-regulates endogenous ERK5 activity but also effectively impedes the translocation of ERK5 to the nucleus. These findings indicate a direct regulatory influence of PTP-SL on the ERK5 pathway and corresponding downstream responses of the cell.
引用
收藏
页码:29503 / 29509
页数:7
相关论文
共 52 条
[1]   Big mitogen-activated protein kinase 1 (BMK1) is a redox-sensitive kinase [J].
Abe, J ;
Kusuhara, M ;
Ulevitch, RJ ;
Berk, BC ;
Lee, JD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (28) :16586-16590
[2]  
Augustine KA, 2000, ANAT REC, V258, P221, DOI 10.1002/(SICI)1097-0185(20000301)258:3<221::AID-AR1>3.0.CO
[3]  
2-W
[4]   A novel regulatory mechanism of MAP kinases activation and nuclear translocation mediated by PKA and the PTP-SL tyrosine phosphatase [J].
Blanco-Aparicio, C ;
Torres, J ;
Pulido, R .
JOURNAL OF CELL BIOLOGY, 1999, 147 (06) :1129-1135
[5]   Stress stimuli increase calcium-induced arachidonic acid release through phosphorylation of cytosolic phospholipase A2 [J].
Buschbeck, M ;
Ghomashchi, F ;
Gelb, MH ;
Watson, SP ;
Börsch-Haubold, AG .
BIOCHEMICAL JOURNAL, 1999, 344 :359-366
[6]   Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase [J].
Camps, M ;
Nichols, A ;
Gillieron, C ;
Antonsson, B ;
Muda, M ;
Chabert, C ;
Boschert, U ;
Arkinstall, S .
SCIENCE, 1998, 280 (5367) :1262-1265
[7]   Activation mechanism of the MAP kinase ERK2 by dual phosphorylation [J].
Canagarajah, BJ ;
Khokhlatchev, A ;
Cobb, MH ;
Goldsmith, EJ .
CELL, 1997, 90 (05) :859-869
[8]   Differential regulation of mitogen-activated protein kinases ERK1/2 and ERK5 by neurotrophins, neuronal activity, and cAMP in neurons [J].
Cavanaugh, JE ;
Ham, J ;
Hetman, M ;
Poser, S ;
Yan, C ;
Xia, ZG .
JOURNAL OF NEUROSCIENCE, 2001, 21 (02) :434-443
[9]   Mammalian MAP kinase signalling cascades [J].
Chang, LF ;
Karin, M .
NATURE, 2001, 410 (6824) :37-40
[10]   HIGH-EFFICIENCY TRANSFORMATION OF MAMMALIAN-CELLS BY PLASMID DNA [J].
CHEN, C ;
OKAYAMA, H .
MOLECULAR AND CELLULAR BIOLOGY, 1987, 7 (08) :2745-2752