The family of Caenorhabditis elegans tyrosine kinase receptors:: Similarities and differences with mammalian receptors

被引:36
作者
Popovici, C
Roubin, R
Coulier, F
Pontarotti, P
Birnbaum, D [1 ]
机构
[1] INSERM U119, Oncol Mol Lab, Marseille, France
[2] Inst J Paoli I Calmettes, F-13009 Marseille, France
[3] INSERM U119, Lab Plast & Evolut Genome, Marseille, France
关键词
D O I
10.1101/gr.9.11.1026
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transmembrane receptors with tyrosine kinase activity (RTK) constitute a superfamily of proteins present in all metazoans that is associated with the control and regulation of cellular processes. They have been the focus of numerous studies and are a good subject for comparative analyses of multigene families in different species aimed at understanding metazoan evolution. The sequence of the genome of the nematode worm Caenorhabditis elegans is available. This offers a good opportunity to study the superfamily of nematode RTKs in its entirety and to compare it with its mammalian counterpart. We show that the C. elegans RTKs constitute various groups with different phylogenetic relationships with mammalian RTKs. A group of four RTKs show structural similarity with the three mammalian receptors For the vascular endothelial growth Factors. Another group comprises RTKs with a short extracellular region, a feature not known in mammals; the genes encoding these RTKs are clustered on chromosome II with other gene families, including genes encoding chitinase-like proteins. Most of the C. elegans RTKs have no direct orthologous relationship with any mammalian RTK, providing an illustration of the importance of the separate evolution of the different phyla.
引用
收藏
页码:1026 / 1039
页数:14
相关论文
共 53 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P3
[3]   Zebrafish hox clusters and vertebrate genome evolution [J].
Amores, A ;
Force, A ;
Yan, YL ;
Joly, L ;
Amemiya, C ;
Fritz, A ;
Ho, RK ;
Langeland, J ;
Prince, V ;
Wang, YL ;
Westerfield, M ;
Ekker, M ;
Postlethwait, JH .
SCIENCE, 1998, 282 (5394) :1711-1714
[4]   Organization of the Fugu rubripes Hox clusters: Evidence for continuing evolution of vertebrate Hox complexes [J].
Aparicio, S ;
Hawker, K ;
Cottage, A ;
Mikawa, Y ;
Zuo, L ;
Venkatesh, B ;
Chen, E ;
Krumlauf, R ;
Brenner, S .
NATURE GENETICS, 1997, 16 (01) :79-83
[5]   Phylogenetic reconstruction of vertebrate Hox cluster duplications [J].
Bailey, WJ ;
Kim, J ;
Wagner, GP ;
Ruddle, FH .
MOLECULAR BIOLOGY AND EVOLUTION, 1997, 14 (08) :843-853
[6]  
BORK P, 1994, J MOL BIOL, V242, P309, DOI 10.1006/jmbi.1994.1582
[7]   egl-17 encodes an invertebrate fibroblast growth factor family member required specifically for sex myoblast migration in Caenorhabditis elegans [J].
Burdine, RD ;
Chen, EB ;
Kwok, SF ;
Stern, MJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (06) :2433-2437
[8]   Genome sequence of the nematode C-elegans:: A platform for investigating biology [J].
不详 .
SCIENCE, 1998, 282 (5396) :2012-2018
[9]   Of worms and men: An evolutionary perspective on the fibroblast growth factor (FGF) and FGF receptor families [J].
Coulier, F ;
Pontarotti, P ;
Roubin, R ;
Hartung, H ;
Goldfarb, M ;
Birnbaum, D .
JOURNAL OF MOLECULAR EVOLUTION, 1997, 44 (01) :43-56
[10]   STRUCTURES AND MECHANISMS OF GLYCOSYL HYDROLASES [J].
DAVIES, G ;
HENRISSAT, B .
STRUCTURE, 1995, 3 (09) :853-859