Involvement of Rhodocyclus-related organisms in phosphorus removal in full-scale wastewater treatment plants

被引:160
作者
Zilles, JL [1 ]
Peccia, J [1 ]
Kim, MW [1 ]
Hung, CH [1 ]
Noguera, DR [1 ]
机构
[1] Univ Wisconsin, Dept Civil & Environm Engn, Madison, WI 53706 USA
关键词
D O I
10.1128/AEM.68.6.2763-2769.2002
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The participation of organisms related to Rhodocyclus in full-scale enhanced biological phosphorus removal (EBPR) was investigated. By using fluorescent in situ hybridization techniques, the communities of Rhodocyclus-related organisms in two full-scale wastewater treatment plants were estimated to represent between 13 and 18% of the total bacterial population. However, the fractions of these communities that participated in polyphosphate accumulation depended on the type of treatment process evaluated. In a University of Cape Town EBPR process, the percentage of Rhodocyclus-related cells that contained polyphosphate was about 20% of the total bacterial population, but these cells represented as much as 73% of the polyphosphate-accumulating organisms (PAOs). In an aerated-anoxic EBPR process, Rhodocyclus-related PAOs were less numerous, accounting for 6% of the total bacterial population and 26% of the total PAO population. In addition, 16S ribosomal DNA sequences 99.9% similar to the sequences of Rhodocyclus-related organisms enriched in acetate-fed bench-scale EBPR reactors were recovered from both full-scale plants. These results confirmed the involvement of Rhodocyclus-related organisms in EBPR and demonstrated their importance in full-scale processes. In addition, the results revealed a significant correlation between the type of EBPR process and the PAO community.
引用
收藏
页码:2763 / 2769
页数:7
相关论文
共 27 条
[1]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
[2]   FLUORESCENT-OLIGONUCLEOTIDE PROBING OF WHOLE CELLS FOR DETERMINATIVE, PHYLOGENETIC, AND ENVIRONMENTAL-STUDIES IN MICROBIOLOGY [J].
AMANN, RI ;
KRUMHOLZ, L ;
STAHL, DA .
JOURNAL OF BACTERIOLOGY, 1990, 172 (02) :762-770
[3]  
[Anonymous], STAND METH EX WAT WA
[4]  
AULING G, 1991, APPL ENVIRON MICROB, V57, P3685
[5]   POSSIBLE BIOLOGICAL MECHANISM OF PHOSPHORUS REMOVAL [J].
BUCHAN, L .
WATER SCIENCE AND TECHNOLOGY, 1983, 15 (3-4) :87-103
[6]   A COMBINED MEMBRANE FILTER-IMMUNOFLUORESCENT TECHNIQUE FOR THE INSITU IDENTIFICATION AND ENUMERATION OF ACINETOBACTER IN ACTIVATED-SLUDGE [J].
CLOETE, TE ;
STEYN, PL .
WATER RESEARCH, 1988, 22 (08) :961-969
[7]   Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation [J].
Crocetti, GR ;
Hugenholtz, P ;
Bond, PL ;
Schuler, A ;
Keller, J ;
Jenkins, D ;
Blackall, LL .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (03) :1175-1182
[8]  
Felsenstein J., 1989, CLADISTICS, V5, P164, DOI DOI 10.1111/J.1096-0031.1989.TB00562.X
[9]   Microbiological Basis of Phosphate Removal in the Activated Sludge Process for the Treatment of Wastewater [J].
Fuhs, G. W. ;
Chen, Min .
MICROBIAL ECOLOGY, 1975, 2 (02) :119-138
[10]  
Grady Jr CPL., 2011, BIOL WASTEWATER TREA