The repair of DNA methylation damage in Saccharomyces cerevisiae

被引:88
作者
Xiao, W
Chow, BL
Rathgeber, L
机构
[1] Department of Microbiology, University of Saskatchewan, Saskatoon
关键词
DNA repair; methylation damage; epistasis analysis; Saccharomyces cerevisiae;
D O I
10.1007/s002940050157
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The major genotoxicity of methyl methanesulfonate (MMS) is due to the production of a lethal 3-methyladenine (3MeA) lesion. An alkylation-specific base-excision repair pathway in yeast is initiated by a Mag1 3MeA DNA glycosylase that removes the damaged base, followed by an Apn1 apurinic/apyrimidinic endonuclease that cleaves the DNA strand at the abasic site for subsequent repair. MMS is also regarded as a radiomimetic agent, since a number of DNA radiation-repair mutants are also sensitive to MMS. To understand how these radiation-repair genes are involved in DNA methylation repair, we performed an epistatic analysis by combining yeast mag1 and apn1 mutations with mutations involved in each of the RAD3, RAD6 and RAD52 groups. We found that cells carrying rad6, rad18, rad50 and rad52 single mutations are far more sensitive to killing by MMS than the mag1 mutant, that double mutants were much more sensitive than either of the corresponding single mutants, and that the effects of the double mutants were either additive or synergistic, suggesting that post-replication and recombination-repair pathways recognize either the same lesions as MAG1 and APN1, or else some different lesions produced by MMS treatment. Lesions handled by recombination and post replication repair are not simply 3MeA, since over-expression of the MAG1 gene does not offset the loss of these pathways. Based on the above analyses, we discuss possible mechanisms for the repair of methylation damage by various pathways.
引用
收藏
页码:461 / 468
页数:8
相关论文
共 43 条
[1]   RADH, A GENE OF SACCHAROMYCES-CEREVISIAE ENCODING A PUTATIVE DNA HELICASE INVOLVED IN DNA-REPAIR - CHARACTERISTICS OF RADH MUTANTS AND SEQUENCE OF THE GENE [J].
ABOUSSEKHRA, A ;
CHANET, R ;
ZGAGA, Z ;
CASSIERCHAUVAT, C ;
HEUDE, M ;
FABRE, F .
NUCLEIC ACIDS RESEARCH, 1989, 17 (18) :7211-7219
[2]  
ALANI E, 1989, GENETICS, V122, P47
[3]   SPECIFIC COMPLEX-FORMATION BETWEEN YEAST RAD6 AND RAD18 PROTEINS - A POTENTIAL MECHANISM FOR TARGETING RAD6 UBIQUITIN-CONJUGATING ACTIVITY TO DNA-DAMAGE SITES [J].
BAILLY, V ;
LAMB, J ;
SUNG, P ;
PRAKASH, S ;
PRAKASH, L .
GENES & DEVELOPMENT, 1994, 8 (07) :811-820
[4]   DNA repair [J].
Barnes, Deborah E. ;
Lindahl, Tomas ;
Sedgwick, Barbara .
CURRENT OPINION IN CELL BIOLOGY, 1993, 5 (03) :424-433
[5]   DISTRIBUTION OF METHYL AND ETHYL ADDUCTS FOLLOWING ALKYLATION WITH MONOFUNCTIONAL ALKYLATING-AGENTS [J].
BERANEK, DT .
MUTATION RESEARCH, 1990, 231 (01) :11-30
[6]   CLONING AND EXPRESSION IN ESCHERICHIA-COLI OF A GENE FOR AN ALKYLBASE DNA GLYCOSYLASE FROM SACCHAROMYCES-CEREVISIAE - A HOMOLOG TO THE BACTERIAL ALKA GENE [J].
BERDAL, KG ;
BJORAS, M ;
BJELLAND, S ;
SEEBERG, E .
EMBO JOURNAL, 1990, 9 (13) :4563-4568
[7]  
BOEKE JD, 1987, METHOD ENZYMOL, V154, P164
[8]   3-METHYLADENINE RESIDUES IN DNA INDUCE THE SOS FUNCTION SFIA IN ESCHERICHIA-COLI [J].
BOITEUX, S ;
HUISMAN, O ;
LAVAL, J .
EMBO JOURNAL, 1984, 3 (11) :2569-2573
[9]   POTENTIAL DNA-BINDING DOMAINS IN THE RAD18 GENE-PRODUCT OF SACCHAROMYCES-CEREVISIAE [J].
CHANET, R ;
MAGANASCHWENCKE, N ;
FABRE, F .
GENE, 1988, 74 (02) :543-547
[10]   CLONING A EUKARYOTIC DNA GLYCOSYLASE REPAIR GENE BY THE SUPPRESSION OF A DNA-REPAIR DEFECT IN ESCHERICHIA-COLI [J].
CHEN, J ;
DERFLER, B ;
MASKATI, A ;
SAMSON, L .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (20) :7961-7965