Cell energy density and electrolyte/sulfur ratio in Li-S cells

被引:151
作者
Hagen, M. [1 ]
Fanz, P. [1 ]
Tuebke, J. [1 ]
机构
[1] Fraunhofer Inst Chem Technol ICT, D-76327 Pfinztal, Germany
关键词
Li-S; Energy density; Electrolyte; Electrolyte/sulfur ratio; Pouch cells; LITHIUM-SULFUR BATTERIES; PERFORMANCE; COMPOSITE;
D O I
10.1016/j.jpowsour.2014.04.018
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li-S cells have high potential gravimetric cell energy densities between 200 and 600 Wh kg(-1). To obtain a high cell energy density, the sulfur fraction in the electrode and the sulfur load per cm(2) electrode should be as high as possible next to a good electrochemical sulfur utilization. The quantity of electrolyte added to a cell is crucial for the latter, and an excess of electrolyte is generally beneficial for the electrochemical results. Existing publications on Li-S cells therefore use an excess of electrolyte leading to high electrolyte/sulfur (E/S in ml g(-1)) ratios as these enable high cycle numbers and good sulfur utilization. However, these studies do not take account of the high passive weight of the electrolyte.The high E/S ratios involved mean that the obtained cell energy density is below commercial lithium-ion cell level. To emphasize the impact of the electrolyte on the cell energy density we calculated possible cell energy densities from material test cell experiments for various E/S ratios, sulfur and carbon loads. Furthermore small pouch cells with only a very small dead cell volume absorbing electrolyte are created to examine ideal E/S ratios for a specific electrode. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:30 / 34
页数:5
相关论文
共 19 条
[1]  
Affinitio J., S SCAL EN STOR LI IO
[2]   On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries [J].
Aurbach, Doron ;
Pollak, Elad ;
Elazari, Ran ;
Salitra, Gregory ;
Kelley, C. Scordilis ;
Affinito, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (08) :A694-A702
[3]   Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries [J].
Cao, Yuliang ;
Li, Xiaolin ;
Aksay, Ilhan A. ;
Lemmon, John ;
Nie, Zimin ;
Yang, Zhenguo ;
Liu, Jun .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (17) :7660-7665
[4]   Polysulfide shuttle control: Towards a lithium-sulfur battery with superior capacity performance up to 1000 cycles by matching the sulfur/electrolyte loading [J].
Cheng, Xin-Bing ;
Huang, Jia-Qi ;
Peng, Hong-Jie ;
Nie, Jing-Qi ;
Liu, Xin-Yan ;
Zhang, Qiang ;
Wei, Fei .
JOURNAL OF POWER SOURCES, 2014, 253 :263-268
[5]   Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes [J].
Choi, Jae-Won ;
Kim, Jin-Kyu ;
Cheruvally, Gouri ;
Ahn, Jou-Hyeon ;
Ahn, Hyo-Jun ;
Kim, Ki-Won .
ELECTROCHIMICA ACTA, 2007, 52 (05) :2075-2082
[6]   High Energy Density Poly(acrylonitrile)-Sulfur Composite-Based Lithium-Sulfur Batteries [J].
Fanous, Jean ;
Wegner, Marcus ;
Spera, Marcelle B. M. ;
Buchmeiser, Michael R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (08) :A1169-A1170
[7]  
Gorkovenko R., 2005, US Patent, Patent No. [WO 2005078851 Al, 2005078851]
[8]   Sulfur Cathodes with Carbon Current Collector for Li-S cells [J].
Hagen, M. ;
Feisthammel, G. ;
Fanz, P. ;
Grossmann, H. T. ;
Doerfler, S. ;
Tuebke, J. ;
Hoffmann, M. J. ;
Boerner, D. ;
Joos, M. ;
Althues, H. ;
Kaskel, S. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (06) :A996-A1002
[9]   Development and costs calculation of lithium-sulfur cells with high sulfur load and binder free electrodes [J].
Hagen, M. ;
Doerfler, S. ;
Fanz, P. ;
Berger, T. ;
Speck, R. ;
Tuebke, J. ;
Althues, H. ;
Hoffmann, M. J. ;
Scherr, C. ;
Kaskel, S. .
JOURNAL OF POWER SOURCES, 2013, 224 :260-268
[10]  
Ji X., 2009, NATURE, V9, P500