Asymptotic Achievability of the Cramer-Rao Bound for Noisy Compressive Sampling

被引:49
作者
Babadi, Behtash [1 ]
Kalouptsidis, Nicholas [2 ]
Tarokh, Vahid [1 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Univ Athens, Dept Informat & Telecommun, Athens 15773, Greece
关键词
Compressive sampling; information theory; parameter estimation;
D O I
10.1109/TSP.2008.2010379
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider a model of the form y = Ax + n, where x is an element of C-M is sparse with at most L nonzero coefficients in unknown locations, y is an element of C-N is the observation vector, A is an element of C-NxM is the measurement matrix and n is an element of C-N is the Gaussian noise. We develop a Cramer-Rao bound on the mean squared estimation error of the nonzero elements of x, corresponding to the genie-aided estimator (GAE) which is provided with the locations of the nonzero elements of x. Intuitively, the mean squared estimation error of any estimator without the knowledge of the locations of the nonzero elements of x is no less than that of the GAE. Assuming that L/N is fixed, we establish the existence of an estimator that asymptotically achieves the Cramer-Rao bound without any knowledge of the locations of the nonzero elements of x as N -> infinity, for A a random Gaussian matrix whose elements are drawn i.i.d. according to N(0, 1).
引用
收藏
页码:1233 / 1236
页数:4
相关论文
共 7 条
[1]  
AKCAKAYA M, IEEE T INF THE UNPUB
[2]   Decoding by linear programming [J].
Candes, EJ ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) :4203-4215
[3]  
Candes E, 2007, ANN STAT, V35, P2313, DOI 10.1214/009053606000001523
[4]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[5]  
Haupt J., 2006, IEEE T INF THEORY, V52
[6]  
Thomas MC., 2006, Elements of Information Theory, V2nd ed
[7]  
Van Trees H. L., 2001, Detection, Estimation, and Modulation TheoryPart I