An adaptive hierarchical approximation method on the sphere using axisymmetric locally supported basis functions

被引:5
作者
Brand, R
Freeden, W
Frohlich, J
机构
[1] UNIV KAISERSLAUTERN,GEOMATH GRP,D-67663 KAISERSLAUTERN,GERMANY
[2] KONRAD ZUSE ZENTRUM INFORMAT TECH BERLIN,D-10711 BERLIN,GERMANY
关键词
functional approximation; computational methods in geophysics; adaptive hierarchical discretization;
D O I
10.1007/BF02247405
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The paper discusses the approximation of scattered data on the sphere which is one of the major tasks in geomathematics. Starting from the discretization of singular integrals on the sphere the authors devise a simple approximation method that employs locally supported spherical polynomials and does not require equidistributed grids. It is the basis for a hierarchical approximation algorithm using differently scaled basis functions, adaptivity and error control. The method is applied to two examples one of which is a digital terrain model of Australia.
引用
收藏
页码:187 / 212
页数:26
相关论文
共 22 条
[1]  
Berens H., 1968, PUBL RES I MATH SCI, V4, P201
[3]  
BRAND R, THESIS U KAISERSLAUT
[4]  
Butzer P. L., 1971, Reviews in Group Representation Theory, Part A (Pure and Applied Mathematics Series, VI
[5]  
Calderon A.P., 1955, T AM MATH SOC, V78, P209
[6]  
CUI J, 1992, Z VERMESSUNGSWESEN, V5, P266
[7]  
EBNER H, 1988, INT ARCH PHOTOGR B11, V27
[8]   NONORTHOGONAL EXPANSIONS ON THE SPHERE [J].
FREEDEN, W ;
SCHREINER, M .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1995, 18 (02) :83-120
[9]  
FREEDEN W, 1995, IAG S, V114, P112
[10]  
FREEDEN W, 1990, P 7 MATH GEOPH SEM H, P79