The Riemannian Goldberg-Sachs theorem

被引:57
作者
Apostolov, V [1 ]
Gauduchon, P [1 ]
机构
[1] ECOLE POLYTECH,CTR MATH,CNRS URA 169,F-91128 PALAISEAU,FRANCE
关键词
D O I
10.1142/S0129167X97000214
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper contains a description of compact Hermitian complex surfaces whose Riemannian Ricci tensor is of type (1,1). This in turn comes as a consequence of a Riemannian version of the well-known (generalized) Goldberg-Sachs theorem of the General Relativity. A complete proof of the Riemannian version is given in the framework of ''classical'' Hermitian geometry. The paper includes some more results also pertaining to ''Riemannian Goldberg-Sachs theory'', as well as a ''dual theory'' involving the Penrose operator.
引用
收藏
页码:421 / 439
页数:19
相关论文
共 27 条
[1]  
APOSTOLOV V, GEN GOLDBERG SACHS T
[2]  
BOURGUIGNON JP, 1981, GEOMETRIE RIEMANNIEN, V4
[3]   CONFORMAL DUALITY AND COMPACT COMPLEX-SURFACES [J].
BOYER, CP .
MATHEMATISCHE ANNALEN, 1986, 274 (03) :517-526
[4]  
Calabi E., 1982, SEM DIFF GEOM
[5]   HOLOMORPHIC VECTOR FIELDS ON COMPLEX SURFACES [J].
CARRELL, J ;
HOWARD, A ;
KOSNIOWS.C .
MATHEMATISCHE ANNALEN, 1973, 204 (01) :73-81
[6]  
CHO JT, IN PRESS NAGOYA MATH
[7]  
DERDZINSKI A, 1983, COMPOS MATH, V49, P405
[8]  
Gauduchon P, 1995, J REINE ANGEW MATH, V469, P1
[9]   THE 1-FORM OF TORSION OF A COMPACT HERMITIAN MANIFOLD [J].
GAUDUCHON, P .
MATHEMATISCHE ANNALEN, 1984, 267 (04) :495-518
[10]  
GRANTCHAROV G, COMMUNICATION