Ultrafast infrared spectroscopy reveals a key step for successful entry into the photocycle for photoactive yellow protein

被引:86
作者
van Wilderen, L. J. G. W.
van der Horst, M. A.
van Stokkum, I. H. M.
Hellingwerf, K. J.
van Grondelle, R.
Groot, M. L.
机构
[1] Vrije Univ Amsterdam, Fac Sci, Dept Phys & Astron, NL-1081 HV Amsterdam, Netherlands
[2] Univ Amsterdam, Swammerdam Inst Life Sci, Microbiol Lab, NL-1018 WV Amsterdam, Netherlands
关键词
ground state intermediate; hydrogen bond; quantum yield; picosecond; vibrational;
D O I
10.1073/pnas.0603476103
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Photoactive proteins such as PYP (photoactive yellow protein) are generally accepted as model systems for studying protein signal state formation. PYP is a blue-light sensor from the bacterium Halorhodospira halophila. The formation of PYP's signaling state is initiated by trans-cis isomerization of the p-coumaric acid chromophore upon the absorption of light. The quantum yield of signaling state formation is approximate to 0.3. Using femtosecond visible pump/mid-IR probe spectroscopy, we investigated the structure of the very short-lived ground state intermediate (GSI) that results from an unsuccessful attempt to enter the photocycle. This intermediate and the first stable GSI on pathway into the photocycle, 10, both have a mid-IR difference spectrum that is characteristic of a cis isomer, but only the 10 intermediate has a chromophore with a broken hydrogen bond with the backbone N atom of Cys-69. We suggest, therefore, that breaking this hydrogen bond is decisive for a successful entry into the photocycle. The chromophore also engages in a hydrogen-bonding network by means of its pheno-late group with residues Tyr-42 and Glu-46. We have investigated the role of this hydrogen bond by exchanging the H bond-donating residue Glu-46 with the weaker H bond-donating glutamine (i.e., Gln-46). We have observed that this mutant exhibits virtually identical kinetics and product yields as WT PYP, even though during the I-0-to-I-1 transition, on the 800-ps time scale, the hydrogen bond of the chromophore with Gln-46 is broken, whereas this hydrogen bond remains intact with Glu-46.
引用
收藏
页码:15050 / 15055
页数:6
相关论文
共 49 条
[1]   Structural heterogeneity of cryotrapped intermediates in the bacterial blue light photoreceptor, photoactive yellow protein [J].
Anderson, S ;
Srajer, V ;
Moffat, K .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 2004, 80 (01) :7-14
[2]   The primary events in the photoactivation of yellow protein [J].
Baltuska, A ;
vanStokkum, IHM ;
Kroon, A ;
Monshouwer, R ;
Hellingwerf, KJ ;
vanGrondelle, R .
CHEMICAL PHYSICS LETTERS, 1997, 270 (3-4) :263-266
[3]   1.4 ANGSTROM STRUCTURE OF PHOTOACTIVE YELLOW PROTEIN, A CYTOSOLIC PHOTORECEPTOR - UNUSUAL FOLD, ACTIVE-SITE, AND CHROMOPHORE [J].
BORGSTAHL, GEO ;
WILLIAMS, DR ;
GETZOFF, ED .
BIOCHEMISTRY, 1995, 34 (19) :6278-6287
[4]   Structure of the I1 early intermediate of photoactive yellow protein by FTIR spectroscopy [J].
Brudler, R ;
Rammelsberg, R ;
Woo, TT ;
Getzoff, ED ;
Gerwert, K .
NATURE STRUCTURAL BIOLOGY, 2001, 8 (03) :265-270
[5]   Environmental effects on the femtosecond-picosecond fluorescence dynamics of photoactive yellow protein: Chromophores in aqueous solutions and in protein nanospaces modified by site-directed mutagenesis [J].
Chosrowjan, H ;
Mataga, N ;
Shibata, Y ;
Imamoto, Y ;
Tokunaga, F .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (40) :7695-7698
[6]   Femtosecond-picosecond fluorescence studies on excited state dynamics of photoactive yellow protein from Ectothiorhodospira halophila [J].
Chosrowjan, H ;
Mataga, N ;
Nakashima, N ;
Imamoto, Y ;
Tokunaga, F .
CHEMICAL PHYSICS LETTERS, 1997, 270 (3-4) :267-272
[7]   Photoactive yellow protein: A prototypic PAS domain sensory protein and development of a common signaling mechanism [J].
Cusanovich, MA ;
Meyer, TE .
BIOCHEMISTRY, 2003, 42 (17) :4759-4770
[8]   Femtosecond spectroscopic observations of initial intermediates in the photocycle of the photoactive yellow protein from Ectothiorhodospira halophila [J].
Devanathan, S ;
Pacheco, A ;
Ujj, L ;
Cusanovich, M ;
Tollin, G ;
Lin, S ;
Woodbury, N .
BIOPHYSICAL JOURNAL, 1999, 77 (02) :1017-1023
[9]   Solution structure and backbone dynamics of the photoactive yellow protein [J].
Düx, P ;
Rubinstenn, G ;
Vuister, GW ;
Boelens, R ;
Mulder, FAA ;
Hård, K ;
Hoff, WD ;
Kroon, AR ;
Crielaard, W ;
Hellingwerf, KJ ;
Kaptein, R .
BIOCHEMISTRY, 1998, 37 (37) :12689-12699
[10]   Active site mutants implicate key residues for control of color and light cycle kinetics of photoactive yellow protein [J].
Genick, UK ;
Devanathan, S ;
Meyer, TE ;
Canestrelli, IL ;
Williams, E ;
Cusanovich, MA ;
Tollin, G ;
Getzoff, ED .
BIOCHEMISTRY, 1997, 36 (01) :8-14