Activation tagging using the En-I maize transposon system in Arabidopsis

被引:111
作者
Marsch-Martinez, N
Greco, R
Van Arkel, G
Herrera-Estrella, L
Pereira, A
机构
[1] Plant Res Int, NL-6700 AA Wageningen, Netherlands
[2] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Guanajuato, Mexico
关键词
D O I
10.1104/pp.003327
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
A method for the generation of stable activation tag inserts was developed in Arabidopsis using the maize (Zen mays) En-I transposon system. The method employs greenhouse selectable marker genes that are useful to efficiently generate large populations of insertions. A population of about 8,300 independent stable activation tag inserts has been produced. Greenhouse-based screens for mutants in a group of plants containing about 2,900 insertions revealed about 31 dominant mutants, suggesting a dominant mutant frequency of about 1%. From the first batch of about 400 stable insertions screened in the greenhouse, four gain-in-function, dominant activation-tagged, morphological mutants were identified. A novel gain-in-function mutant called thread is described, in which the target gene belongs to the same family as the YUCCA flavin-mono-oxygenase that was identified by T-DNA activation tagging. The high frequency of identified gain-in-function mutants in the population suggests that the En-I system described here is an efficient strategy to saturate plant genomes with activation tag inserts. Because only a small number of primary transformants are required to generate an activation tag population, the En-I system appears to be an attractive alternative to study plant species where the present transformation methods have low efficiencies.
引用
收藏
页码:1544 / 1556
页数:13
相关论文
共 46 条
[1]   A 2-ELEMENT ENHANCER-INHIBITOR TRANSPOSON SYSTEM IN ARABIDOPSIS-THALIANA [J].
AARTS, MGM ;
CORZAAN, P ;
STIEKEMA, WJ ;
PEREIRA, A .
MOLECULAR AND GENERAL GENETICS, 1995, 247 (05) :555-564
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   A large scale analysis of cDNA in Arabidopsis thaliana:: Generation of 12,028 non-redundant expressed sequence tags from normalized and size-selected cDNA libraries [J].
Asamizu, E ;
Nakamura, Y ;
Sato, S ;
Tabata, S .
DNA RESEARCH, 2000, 7 (03) :175-180
[4]   Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis [J].
Borevitz, JO ;
Xia, YJ ;
Blount, J ;
Dixon, RA ;
Lamb, C .
PLANT CELL, 2000, 12 (12) :2383-2393
[5]   Arabidopsis gene knockout:: phenotypes wanted [J].
Bouché, N ;
Bouchez, D .
CURRENT OPINION IN PLANT BIOLOGY, 2001, 4 (02) :111-117
[6]   Growth stage-based phenotypic analysis of arabidopsis:: A model for high throughput functional genomics in plants [J].
Boyes, DC ;
Zayed, AM ;
Ascenzi, R ;
McCaskill, AJ ;
Hoffman, NE ;
Davis, KR ;
Görlach, J .
PLANT CELL, 2001, 13 (07) :1499-1510
[7]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[8]   ENGINEERING HERBICIDE RESISTANCE IN PLANTS BY EXPRESSION OF A DETOXIFYING ENZYME [J].
DEBLOCK, M ;
BOTTERMAN, J ;
VANDEWIELE, M ;
DOCKX, J ;
THOEN, C ;
GOSSELE, V ;
MOVVA, NR ;
THOMPSON, C ;
VANMONTAGU, M ;
LEEMANS, J .
EMBO JOURNAL, 1987, 6 (09) :2513-2518
[9]  
DeNeve M, 1997, PLANT J, V11, P15, DOI 10.1046/j.1365-313X.1997.11010015.x
[10]   CLONING AND SEQUENCE-ANALYSIS OF TRUNCATED T-DNA INSERTS FROM NICOTIANA-TABACUM [J].
GHEYSEN, G ;
HERMAN, L ;
BREYNE, P ;
GIELEN, J ;
VANMONTAGU, M ;
DEPICKER, A .
GENE, 1990, 94 (02) :155-163