Dense coding for continuous variables

被引:386
作者
Braunstein, SL [1 ]
Kimble, HJ
机构
[1] Univ Coll N Wales, Bangor LL57 1UT, Gwynedd, Wales
[2] CALTECH, Norman Bridge Lab Phys 12 33, Pasadena, CA 91125 USA
来源
PHYSICAL REVIEW A | 2000年 / 61卷 / 04期
关键词
D O I
10.1103/PhysRevA.61.042302
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A scheme to achieve dense quantum coding for the quadrature amplitudes of the electromagnetic field is presented. The protocol utilizes shared entanglement provided by nondegenerate parametric down-conversion in the limit of large gain to attain high efficiency. For a constraint in the mean number of photons (n) over bar associated with modulation in the signal channel, the channel capacity for dense coding is found to be In(1+(n) over bar+(n) over bar(2)), which always beats coherent-state communication and surpasses squeezed-stare communication fur (n) over bar>1. For (n) over bar >>1, the dense coding capacity approaches twice that of either scheme.
引用
收藏
页数:4
相关论文
共 27 条
[1]   COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES [J].
BENNETT, CH ;
WIESNER, SJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (20) :2881-2884
[2]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[3]   Error correction for continuous quantum variables [J].
Braunstein, SL .
PHYSICAL REVIEW LETTERS, 1998, 80 (18) :4084-4087
[4]   Quantum error correction for communication with linear optics [J].
Braunstein, SL .
NATURE, 1998, 394 (6688) :47-49
[5]   Teleportation of continuous quantum variables [J].
Braunstein, SL ;
Kimble, HJ .
PHYSICAL REVIEW LETTERS, 1998, 80 (04) :869-872
[6]   QUANTUM LIMITS ON BOSONIC COMMUNICATION RATES [J].
CAVES, CM ;
DRUMMOND, PD .
REVIEWS OF MODERN PHYSICS, 1994, 66 (02) :481-537
[7]   Can quantum-mechanical description of physical reality be considered complete? [J].
Einstein, A ;
Podolsky, B ;
Rosen, N .
PHYSICAL REVIEW, 1935, 47 (10) :0777-0780
[8]   Unconditional quantum teleportation [J].
Furusawa, A ;
Sorensen, JL ;
Braunstein, SL ;
Fuchs, CA ;
Kimble, HJ ;
Polzik, ES .
SCIENCE, 1998, 282 (5389) :706-709
[9]   QUANTUM EFFECTS IN COMMUNICATIONS SYSTEMS [J].
GORDON, JP .
PROCEEDINGS OF THE INSTITUTE OF RADIO ENGINEERS, 1962, 50 (09) :1898-&
[10]   The capacity of the quantum channel with general signal states [J].
Holevo, AS .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (01) :269-273