Thermal entanglement of spins in mean-field clusters

被引:17
作者
Asoudeh, M. [1 ]
Karimipour, V. [1 ]
机构
[1] Sharif Univ Technol, Dept Phys, Tehran, Iran
来源
PHYSICAL REVIEW A | 2006年 / 73卷 / 06期
关键词
D O I
10.1103/PhysRevA.73.062109
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We determine thermal entanglement in mean-field clusters of N spin one-half particles interacting via the anisotropic Heisenberg interaction, with and without external magnetic field. For the xxx cluster in the absence of magnetic field we prove that only the N=2 ferromagnetic cluster shows entanglement. An external magnetic field B can only entangle xxx antiferromagnetic clusters in certain regions of the B-T plane. On the other hand, the xxz clusters of size N > 2 are entangled only when the interaction is ferromagnetic. Detailed dependence of the entanglement on various parameters is investigated in each case.
引用
收藏
页数:8
相关论文
共 34 条
[1]   Thermal entanglement of spins in the Heisenberg model at low temperatures [J].
Asoudeh, M ;
Karimipour, V .
PHYSICAL REVIEW A, 2004, 70 (05) :052307-1
[2]   Thermal entanglement of spins in an inhomogeneous magnetic field [J].
Asoudeh, M ;
Karimipour, V .
PHYSICAL REVIEW A, 2005, 71 (02)
[3]   Thermal entanglement properties of small spin clusters [J].
Bose, I ;
Tribedi, A .
PHYSICAL REVIEW A, 2005, 72 (02)
[4]   Cancellation of spin-orbit effects in quantum gates based on the exchange coupling in quantum dots [J].
Burkard, G ;
Loss, D .
PHYSICAL REVIEW LETTERS, 2002, 88 (04) :4-479034
[5]   Separability conditions and limit temperatures for entanglement detection in two-qubit Heisenberg XYZ models -: art. no. 052306 [J].
Canosa, N ;
Rossignoli, R .
PHYSICAL REVIEW A, 2004, 69 (05) :052306-1
[6]  
COSTA AT, 2001, PHYS REV LETT, V87, P2707
[7]   Universal quantum computation with the exchange interaction [J].
DiVincenzo, DP ;
Bacon, D ;
Kempe, J ;
Burkard, G ;
Whaley, KB .
NATURE, 2000, 408 (6810) :339-342
[8]   Continuous unitary transformations and finite-size scaling exponents in the Lipkin-Meshkov-Glick model [J].
Dusuel, S ;
Vidal, J .
PHYSICAL REVIEW B, 2005, 71 (22)
[9]   Finite-size scaling exponents of the Lipkin-Meshkov-Glick model [J].
Dusuel, S ;
Vidal, J .
PHYSICAL REVIEW LETTERS, 2004, 93 (23)
[10]   VALIDITY OF MANY-BODY APPROXIMATION METHODS FOR A SOLVABLE MODEL .3. DIAGRAM SUMMATIONS [J].
GLICK, AJ ;
LIPKIN, HJ ;
MESHKOV, N .
NUCLEAR PHYSICS, 1965, 62 (02) :211-&