New energy concepts such as distributed power generation systems (DPGSs) are changing the face of electric distribution and transmission. Power electronics researchers try to apply new electronic controller solutions with the capacity of implementing new and more complex control algorithms combined with internal high-speed communication interfaces. Thus, it is possible to monitor, store, and transfer a large number of internal variables that can be sent online to local or remote hosts in order to take new set points of different generation units. With this objective, this paper presents the design, implementation, and test of an industrial multiprocessor controller based on a floating-point digital signal processor (DSP) and a field-programmable gate array, which operate cooperatively. The communication architecture, which has been added to the proposed electronic solution, consists of a universal serial bus (USB), implemented with a minimum use of the DSP core, and a controller area network (CAN) bus that permits distributed control. Although the proposed system can be readily applied to any DPGS, in this paper, it is focused on a 150-kVA back-to-back three-level neutral-point-clamped voltage source converter for wind turbine applications.