Increased Level of Extracellular ATP at Tumor Sites: In Vivo Imaging with Plasma Membrane Luciferase

被引:538
作者
Pellegatti, Patrizia [1 ]
Raffaghello, Lizzia [2 ]
Bianchi, Giovanna [2 ]
Piccardi, Federica [3 ]
Pistoia, Vito [2 ]
Di Virgilio, Francesco [1 ]
机构
[1] Univ Ferrara, Dept Expt & Diagnost Med, Sect Gen Pathol, ICSI, I-44100 Ferrara, Italy
[2] Giannina Gaslini Inst, Lab Oncol, Genoa, Italy
[3] Ist Tumori, Anim Res Facil, Genoa, Italy
来源
PLOS ONE | 2008年 / 3卷 / 07期
关键词
D O I
10.1371/journal.pone.0002599
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: There is growing awareness that tumour cells build up a "self-advantageous'' microenvironment that reduces effectiveness of anti-tumour immune response. While many different immunosuppressive mechanisms are likely to come into play, recent evidence suggests that extracellular adenosine acting at A2A receptors may have a major role in down-modulating the immune response as cancerous tissues contain elevated levels of adenosine and adenosine break-down products. While there is no doubt that all cells possess plasma membrane adenosine transporters that mediate adenosine uptake and may also allow its release, it is now clear that most of extracellularly-generated adenosine originates from the catabolism of extracellular ATP. Methodology/Principal Findings: Measurement of extracellular ATP is generally performed in cell supernatants by HPLC or soluble luciferin-luciferase assay, thus it generally turns out to be laborious and inaccurate. We have engineered a chimeric plasma membrane-targeted luciferase that allows in vivo real-time imaging of extracellular ATP. With this novel probe we have measured the ATP concentration within the tumour microenvironment of several experimentally-induced tumours. Conclusions/Significance: Our results show that ATP in the tumour interstitium is in the hundrends micromolar range, while it is basically undetectable in healthy tissues. Here we show that a chimeric plasma membrane-targeted luciferase allows in vivo detection of high extracellular ATP concentration at tumour sites. On the contrary, tumour-free tissues show undetectable extracellular ATP levels. Extracellular ATP may be crucial for the tumour not only as a stimulus for growth but also as a source of an immunosuppressive agent such as adenosine. Our approach offers a new tool for the investigation of the biochemical composition of tumour milieu and for development of novel therapies based on the modulation of extracellular purine-based signalling.
引用
收藏
页数:9
相关论文
共 27 条
[1]   Growth regulation of the vascular system: an emerging role for adenosine [J].
Adair, TH .
AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 2005, 289 (02) :R283-R296
[2]   The tumour microenvironment as a target for chemoprevention [J].
Albini, Adriana ;
Sporn, Michael B. .
NATURE REVIEWS CANCER, 2007, 7 (02) :139-147
[3]   Detection of local ATP release from activated platelets using cell surface-attached firefly luciferase [J].
Beigi, R ;
Kobatake, E ;
Aizawa, M ;
Dubyak, GR .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1999, 276 (01) :C267-C278
[4]   Context, tissue plasticity, and cancer: Are tumor stem cells also regulated by the microenvironment? [J].
Bissell, MJ ;
LaBarge, MA .
CANCER CELL, 2005, 7 (01) :17-23
[5]   NTPDase and 5′ecto-nucleotidase expression profiles and the pattern of extracellular ATP metabolism in the Walker 256 tumor [J].
Buffon, A. ;
Wink, M. R. ;
Ribeiro, B. V. ;
Casali, E. A. ;
Libermann, T. A. ;
Zerbini, L. F. ;
Robson, S. C. ;
Sarkis, J. J. F. .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2007, 1770 (08) :1259-1265
[6]   A perivascular niche for brain tumor stem cells [J].
Calabrese, Christopher ;
Poppleton, Helen ;
Kocak, Mehmet ;
Hogg, Twala L. ;
Fuller, Christine ;
Hamner, Blair ;
Oh, Eun Young ;
Gaber, M. Waleed ;
Finklestein, David ;
Allen, Meredith ;
Frank, Adrian ;
Bayazitov, Ildar T. ;
Zakharenko, Stanislav S. ;
Gajjar, Amar ;
Davidoff, Andrew ;
Gilbertson, Richard J. .
CANCER CELL, 2007, 11 (01) :69-82
[7]   In vivo imaging of NF-κB activity [J].
Carlsen, H ;
Moskaug, JO ;
Fromm, SH ;
Blomhoff, R .
JOURNAL OF IMMUNOLOGY, 2002, 168 (03) :1441-1446
[8]   In vivo imaging of transcriptionally active estrogen receptors [J].
Ciana, P ;
Raviscioni, M ;
Mussi, P ;
Vegeto, E ;
Que, I ;
Parker, MG ;
Lowik, C ;
Maggi, A .
NATURE MEDICINE, 2003, 9 (01) :82-86
[9]   Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression [J].
Deaglio, Silvia ;
Dwyer, Karen M. ;
Gao, Wenda ;
Friedman, David ;
Usheva, Anny ;
Erat, Anna ;
Chen, Jiang-Fan ;
Enjyoji, Keiichii ;
Linden, Joel ;
Oukka, Mohamed ;
Kuchroo, Vijay K. ;
Strom, Terry B. ;
Robson, Simon C. .
JOURNAL OF EXPERIMENTAL MEDICINE, 2007, 204 (06) :1257-1265
[10]   Liaisons dangereuses:: P2X7 and the inflammasome [J].
Di Virgilio, Francesco .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2007, 28 (09) :465-472