Studies on rice seed quality through analysis of a large-scale T-DNA insertion population

被引:35
作者
Fu, Fang-Fang [1 ]
Ye, Rui [1 ]
Xu, Shu-Ping [1 ]
Xue, Hong-Wei [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Plant Physiol & Ecol, Natl Key Lab Plant Mol Genet, Shanghai 200032, Peoples R China
关键词
rice; T-DNA insertion population; seed quality; near-infrared spectroscopy; STARCH-BRANCHING ENZYME; TOS17; RETROTRANSPOSON; FUNCTIONAL-ANALYSIS; SEQUENCE-ANALYSIS; ARABIDOPSIS GENE; TRANSGENIC RICE; PROTEIN; MUTANT; MUTAGENESIS; ENDOSPERM;
D O I
10.1038/cr.2009.15
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
A rice (Oryza sativa) T-DNA insertion population, which included more than 63 000 independent transgenic lines and 8 840 identified flanking sequence tags (FSTs) that were mapped onto the rice genome, was developed to systemically study the rice seed quality control. Genome-wide analysis of the FST distribution showed that T-DNA insertions were positively correlated with expressed genes, but negatively with transposable elements and small RNAs. In addition, the recovered T-DNAs were preferentially located at the untranslated region of the expressed genes. More than 11 000 putative homozygous lines were obtained through multi-generations of planting and resistance screening, and measurement of seed quality of around half of them, including the contents of starch, amylose, protein and fat, with a nondestructive near-infrared spectroscopy method, identified 551 mutants with unique or multiple altered parameters of seed quality. Analysis of the corresponding FSTs showed that genes participating in diverse functions, including metabolic processes and transcriptional regulation, were involved, indicating that seed quality is regulated by a complex network.
引用
收藏
页码:380 / 391
页数:12
相关论文
共 78 条
[1]  
Alonso JM, 2003, METH MOL B, V236, P177
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   QTL mapping of grain quality traits from the interspecific cross Oryza sativa x O-glaberrima [J].
Aluko, G ;
Martinez, C ;
Tohme, J ;
Castano, C ;
Bergman, C ;
Oard, JH .
THEORETICAL AND APPLIED GENETICS, 2004, 109 (03) :630-639
[4]   The small RNA profile during Drosophila melanogaster development [J].
Aravin, AA ;
Lagos-Quintana, M ;
Yalcin, A ;
Zavolan, M ;
Marks, D ;
Snyder, B ;
Gaasterland, T ;
Meyer, J ;
Tuschl, T .
DEVELOPMENTAL CELL, 2003, 5 (02) :337-350
[5]   A central integrator of transcription networks in plant stress and energy signalling [J].
Baena-Gonzalez, Elena ;
Rolland, Filip ;
Thevelein, Johan M. ;
Sheen, Jen .
NATURE, 2007, 448 (7156) :938-U10
[6]   Recent advances in rice biotechnology-towards genetically superior transgenic rice [J].
Bajaj, S ;
Mohanty, A .
PLANT BIOTECHNOLOGY JOURNAL, 2005, 3 (03) :275-307
[7]   The distribution of T-DNA in the genomes of transgenic Arabidopsis and rice [J].
Barakat, A ;
Gallois, P ;
Raynal, M ;
Mestre-Ortega, D ;
Sallaud, C ;
Guiderdoni, E ;
Delseny, M ;
Bernardi, G .
FEBS LETTERS, 2000, 471 (2-3) :161-164
[8]   Development of a calibration to predict maize seed composition using single kernel near infrared spectroscopy [J].
Baye, TM ;
Pearson, TC ;
Settles, AM .
JOURNAL OF CEREAL SCIENCE, 2006, 43 (02) :236-243
[9]   Hordoindolines are associated with a major endosperm-texture QTL in Barley (Hordeum vulgare) [J].
Beecher, B ;
Bowman, J ;
Martin, JM ;
Bettge, AD ;
Morris, CF ;
Blake, TK ;
Giroux, MJ .
GENOME, 2002, 45 (03) :584-591
[10]   Arabidopsis gene knockout:: phenotypes wanted [J].
Bouché, N ;
Bouchez, D .
CURRENT OPINION IN PLANT BIOLOGY, 2001, 4 (02) :111-117