Quadruple suspension design for advanced LIGO

被引:79
作者
Robertson, NA [1 ]
Cagnoli, G
Crooks, DRM
Elliffe, E
Faller, JE
Fritschel, P
Gossler, S
Grant, A
Heptonstall, A
Hough, J
Lück, H
Mittleman, R
Perreur-Lloyd, M
Plissi, MV
Rowan, S
Shoemaker, DH
Sneddon, PH
Strain, KA
Torrie, CI
Ward, H
Willems, P
机构
[1] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland
[2] Univ Colorado, Boulder, CO 80309 USA
[3] NIST, JILA, Boulder, CO 80309 USA
[4] MIT, LIGO Lab, Cambridge, MA 02139 USA
[5] Leibniz Univ Hannover, Inst Atom & Mol Phys, Spekt Abt, D-30167 Hannover, Germany
[6] Stanford Univ, Ginzton Lab, Dept Appl Phys, Stanford, CA 94305 USA
[7] CALTECH, LIGO Lab, Pasadena, CA 91125 USA
关键词
D O I
10.1088/0264-9381/19/15/311
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we describe the conceptual design for the suspension system for the test masses for Advanced LIGO, the planned upgrade to LIGO, the US laser interferometric gravitational-wave observatory. The design is based on the triple pendulum design developed for GEO 600-the German/UK interferometric gravitational wave detector. The GEO design incorporates fused silica fibres of circular cross-section attached to the fused silica mirror (test mass) in the lowest pendulum stage, in order to minimize the thermal noise from the pendulum modes. The damping of the low-frequency modes of the triple pendulum is achieved by using co-located sensors and actuators at the hi-hest mass of the triple pendulum. Another feature of the design is that global control forces acting on the mirrors, used to maintain the output of the interferometer on a dark fringe, are applied via a triple reaction pendulum, so that these forces can be implemented via a seismically isolated platform. These techniques have been extended to meet the more stringent noise levels planned for in Advanced LIGO. In particular, the Advanced LIGO baseline design requires a quadruple pendulum with a final stage consisting of a 40 kg sapphire mirror, suspended on fused silica ribbons or fibres. The design is chosen to aim to reach a target noise contribution from the suspension corresponding to a displacement sensitivity of 10(-19) m Hz(-1/2) at 10 Hz at each of the test masses.
引用
收藏
页码:4043 / 4058
页数:16
相关论文
共 30 条
[1]   Seismic isolation for Advanced LIGO [J].
Abbott, R ;
Adhikari, R ;
Allen, G ;
Cowley, S ;
Daw, E ;
DeBra, D ;
Giaime, J ;
Hammond, G ;
Hammond, M ;
Hardham, C ;
How, J ;
Hua, W ;
Johnson, W ;
Lantz, B ;
Mason, K ;
Mittleman, R ;
Nichol, J ;
Richman, S ;
Rollins, J ;
Shoemaker, D ;
Stapfer, G ;
Stebbins, R .
CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (07) :1591-1597
[2]  
ANDO M, 2000, P 3 E AM C NEW YORK, P128
[3]  
BARISH BC, 1997, GRAVITATIONAL WAVE D, P155
[4]  
BRILLET A, 1997, GRAVITATIONAL WAVE D, P163
[5]   Very high Q measurements on a fused silica monolithic pendulum for use in enhanced gravity wave detectors [J].
Cagnoli, G ;
Gammaitoni, L ;
Hough, J ;
Kovalik, J ;
McIntosh, S ;
Punturo, M ;
Rowan, S .
PHYSICAL REVIEW LETTERS, 2000, 85 (12) :2442-2445
[6]   Effects of nonlinear thermoelastic damping in highly stressed fibers [J].
Cagnoli, G ;
Willems, PA .
PHYSICAL REVIEW B, 2002, 65 (17) :1-9
[7]   IRREVERSIBILITY AND GENERALIZED NOISE [J].
CALLEN, HB ;
WELTON, TA .
PHYSICAL REVIEW, 1951, 83 (01) :34-40
[8]  
Coyne D, 1996, IEEE AER APPL C P, V4, P31
[9]   Readout and control of a power-recycled interferometric gravitational-wave antenna [J].
Fritschel, P ;
Bork, R ;
González, G ;
Mavalvala, N ;
Ouimette, D ;
Rong, HS ;
Sigg, D ;
Zucker, M .
APPLIED OPTICS, 2001, 40 (28) :4988-4998
[10]   BROWNIAN-MOTION OF A MASS SUSPENDED BY AN ANELASTIC WIRE [J].
GABRIELA, GI ;
SAULSON, PR .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1994, 96 (01) :207-212