A model for persistent Levy motion

被引:33
作者
Chechkin, AV [1 ]
Gonchar, VY [1 ]
机构
[1] Kharkov Phys & Technol Inst, Natl Sci Ctr, Inst Theoret Phys, UA-310108 Kharkov, Ukraine
来源
PHYSICA A | 2000年 / 277卷 / 3-4期
关键词
Levy motion; stable distribution; fractional noise; self-affinity;
D O I
10.1016/S0378-4371(99)00392-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a model, which allows us to approximate fractional Levy noise and fractional Levy motion. Our model is based on: (i) the Gnedenko limit theorem for an attraction basin of stable probability law, and (ii) fractional noise as a result of fractional integration/differentiation of a white Levy noise. We investigate self-affine properties of the approximation and conclude that it is suitable for modeling persistent Levy motion with the Levy index between 1 and 2. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:312 / 326
页数:15
相关论文
共 40 条
[1]  
BACHELIER L, 1900, ANN SCI ECOLE NORM S, V17, P21
[2]  
Blumenthal R., 1960, Trans. Amer. Math. Soc., V95, P263, DOI DOI 10.1090/S0002-9947-1960-0119247-6
[3]  
BLUMMENTAL RM, 1960, J MATH, V4, P370
[4]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[5]  
CHECHKIN V, CONDMAT9901064
[6]  
CHECHKIN V, CONDMAT9902209
[7]  
DARLING DA, 1956, T AM MATH SOC, V83, P164, DOI DOI 10.1090/S0002-9947-1956-0080393-6
[8]  
Feder J., 1988, FRACTALS
[9]  
Gnedenko B. V., 1954, ADDISON WESLEY MATH
[10]  
GORENFLO R, 1998, P EC C PAL SEPT