Independent component analysis-based penalized discriminant method for tumor classification using gene expression data

被引:239
作者
Huang, De-Shuang [1 ]
Zheng, Chun-Hou [1 ]
机构
[1] Chinese Acad Sci, Inst Intelligent Machines, Intelligent Comp Lab, Hefei 230031, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1093/bioinformatics/btl190
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Microarrays are capable of determining the expression levels of thousands of genes simultaneously. One important application of gene expression data is classification of samples into categories. In combination with classification methods, this technology can be useful to support clinical management decisions for individual patients, e. g. in oncology. Standard statistic methodologies in classification or prediction do not work well when the number of variables p (genes) far too exceeds the number of samples n. So, modification of existing statistical methodologies or development of new methodologies is needed for the analysis of microarray data. Results: This paper proposes a new method for tumor classification using gene expression data. In this method, we first employ independent component analysis to model the gene expression data, then apply optimal scoring algorithm to classify them. Further speaking, this approach can first make full use of the high-order statistical information contained in the gene expression data. Second, this approach also employs regularized regression models to handle the situation of large numbers of correlated predictor variables. Finally, the predictive models are developed for classifying tumors based on the entire gene expression profile. To show the validity of the proposed method, we apply it to classify four DNA microarray datasets involving various human normal and tumor tissue samples. The experimental results show that the method is efficient and feasible.
引用
收藏
页码:1855 / 1862
页数:8
相关论文
共 34 条
[1]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[2]   Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays [J].
Alon, U ;
Barkai, N ;
Notterman, DA ;
Gish, K ;
Ybarra, S ;
Mack, D ;
Levine, AJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (12) :6745-6750
[3]   Face recognition by independent component analysis [J].
Bartlett, MS ;
Movellan, JR ;
Sejnowski, TJ .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2002, 13 (06) :1450-1464
[4]   Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses [J].
Bhattacharjee, A ;
Richards, WG ;
Staunton, J ;
Li, C ;
Monti, S ;
Vasa, P ;
Ladd, C ;
Beheshti, J ;
Bueno, R ;
Gillette, M ;
Loda, M ;
Weber, G ;
Mark, EJ ;
Lander, ES ;
Wong, W ;
Johnson, BE ;
Golub, TR ;
Sugarbaker, DJ ;
Meyerson, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (24) :13790-13795
[5]   Molecular classification of cutaneous malignant melanoma by gene expression profiling [J].
Bittner, M ;
Meitzer, P ;
Chen, Y ;
Jiang, Y ;
Seftor, E ;
Hendrix, M ;
Radmacher, M ;
Simon, R ;
Yakhini, Z ;
Ben-Dor, A ;
Sampas, N ;
Dougherty, E ;
Wang, E ;
Marincola, F ;
Gooden, C ;
Lueders, J ;
Glatfelter, A ;
Pollock, P ;
Carpten, J ;
Gillanders, E ;
Leja, D ;
Dietrich, K ;
Beaudry, C ;
Berens, M ;
Alberts, D ;
Sondak, V ;
Hayward, N ;
Trent, J .
NATURE, 2000, 406 (6795) :536-540
[6]   Blind source separation and the analysis of microarray data [J].
Chiappetta, P ;
Roubaud, MC ;
Torrésani, B .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2004, 11 (06) :1090-1109
[7]   INDEPENDENT COMPONENT ANALYSIS, A NEW CONCEPT [J].
COMON, P .
SIGNAL PROCESSING, 1994, 36 (03) :287-314
[8]   Comparison of discrimination methods for the classification of tumors using gene expression data [J].
Dudoit, S ;
Fridlyand, J ;
Speed, TP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (457) :77-87
[9]  
FERRI FJ, 1994, MACH INTELL PATT REC, V16, P403
[10]   A STATISTICAL VIEW OF SOME CHEMOMETRICS REGRESSION TOOLS [J].
FRANK, IE ;
FRIEDMAN, JH .
TECHNOMETRICS, 1993, 35 (02) :109-135