Atomistic Simulations of competition between substrates binding to an enzyme

被引:14
作者
Elcock, AH [1 ]
机构
[1] Univ Iowa, Dept Biochem, Iowa City, IA 52242 USA
关键词
D O I
10.1016/S0006-3495(02)75578-1
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Although the idea that electrostatic potentials generated by enzymes can guide substrates to active sites is well established, it is not always appreciated that the same potentials can also promote the binding of molecules other than the intended substrate, with the result that such enzymes might be sensitive to the presence of competing molecules. To provide a novel means of studying such "electrostatic competition" effects, computer simulation methodology has been developed to allow the diffusion and association of many solute molecules around a single enzyme to be simulated. To demonstrate the power of the methodology, simulations have been conducted on an artificial fusion protein of citrate synthase (CS) and malate dehydrogenase (MDH) to assess the chances of oxaloacetate being channeled between the MDH and CS active sites. The simulations demonstrate that the probability of channeling is strongly dependent on the concentration of the initial substrate (malate) in the solution. In fact, the high concentrations of malate used in experiments appear high enough to abolish any channeling of oxaloacetate. The simulations provide a resolution of a serious discrepancy between previous simulations and experiments and raise important questions relating to the observability of electrostatically mediated substrate channeling in vitro and in vivo.
引用
收藏
页码:2326 / 2332
页数:7
相关论文
共 30 条
[1]   TRIOSEPHOSPHATE ISOMERASE CATALYSIS IS DIFFUSION CONTROLLED - APPENDIX - ANALYSIS OF TRIOSE PHOSPHATE EQUILIBRIA IN AQUEOUS-SOLUTION BY P-31 NMR [J].
BLACKLOW, SC ;
RAINES, RT ;
LIM, WA ;
ZAMORE, PD ;
KNOWLES, JR .
BIOCHEMISTRY, 1988, 27 (04) :1158-1167
[2]  
Bockris J. O. M., 1970, MODERN ELECTROCHEMIS
[3]   Electrostatic channeling of substrates between enzyme active sites: Comparison of simulation and experiment [J].
Elcock, AH ;
Huber, GA ;
McCammon, JA .
BIOCHEMISTRY, 1997, 36 (51) :16049-16058
[4]   Electrostatic channeling in the bifunctional enzyme dihydrofolate reductase-thymidylate synthase [J].
Elcock, AH ;
Potter, MJ ;
Matthews, DA ;
Knighton, DR ;
McCammon, JA .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 262 (03) :370-374
[5]   Evidence for electrostatic channeling in a fusion protein of malate dehydrogenase and citrate synthase [J].
Elcock, AH ;
MaCammon, JA .
BIOCHEMISTRY, 1996, 35 (39) :12652-12658
[6]   Computer simulation of protein-protein interactions [J].
Elcock, AH ;
Sept, D ;
McCammon, JA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (08) :1504-1518
[7]   Macromolecular crowding: an important but neglected aspect of the intracellular environment [J].
Ellis, RJ .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2001, 11 (01) :114-119
[8]   BROWNIAN DYNAMICS WITH HYDRODYNAMIC INTERACTIONS [J].
ERMAK, DL ;
MCCAMMON, JA .
JOURNAL OF CHEMICAL PHYSICS, 1978, 69 (04) :1352-1360
[9]  
Fell D., 1997, Understanding the control of metabolism
[10]   Metabolite profiling for plant functional genomics [J].
Fiehn, O ;
Kopka, J ;
Dörmann, P ;
Altmann, T ;
Trethewey, RN ;
Willmitzer, L .
NATURE BIOTECHNOLOGY, 2000, 18 (11) :1157-1161