Human OGG1 undergoes serine phosphorylation and associates with the nuclear matrix and mitotic chromatin in vivo

被引:74
作者
Dantzer, F [1 ]
Luna, L [1 ]
Bjorås, M [1 ]
Seeberg, E [1 ]
机构
[1] Univ Oslo, Rikshosp, Inst Med Microbiol, Dept Mol Biol, NO-0027 Oslo, Norway
关键词
D O I
10.1093/nar/30.11.2349
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
OGG1 is the major DNA glycosylase in human cells for removal of 7, 8 dihydro-8-oxoguanine (8-oxoG), one of the most frequent endogenous base lesions formed in the DNA of aerobic organisms. During replication, 8-oxoG will frequently mispair with adenine, thus forming G:C --> T:A transversions, a common somatic mutation associated with human cancers. In the present study, we have constructed a stable transfectant cell line expressing hOGG1 fused at the C-terminal end to green fluorescent protein (GFP) and investigated the cellular distribution of the fusion protein by fluorescence analysis. It is shown that hOGG1 is preferentially associated with chromatin and the nuclear matrix during interphase and becomes associated with the condensed chromatin during mitosis. Chromatin-bound hOGG1 was found to be phosphorylated on a serine residue in vivo as revealed by staining with an anti-phosphoserine-specific antibody. Chromatin-associated hOGG1 was co-precipitated with an antibody against protein kinase C (PKC), suggesting that PKC is responsible for the phosphorylation event. Both purified and nuclear matrix-associated hOGG1 were shown to be substrates for PKC-mediated phosphorylation in vitro. This appears to be the first demonstration of a post-translational modification of hOGG1 in vivo.
引用
收藏
页码:2349 / 2357
页数:9
相关论文
共 55 条
[1]   Cell cycle-dependent phosphorylation of the ATRX protein correlates with changes in nuclear matrix and chromatin association [J].
Bérubé, NG ;
Smeenk, CA ;
Picketts, DJ .
HUMAN MOLECULAR GENETICS, 2000, 9 (04) :539-547
[2]   Regulation and localization of the Bloom syndrome protein in response to DNA damage [J].
Bischof, O ;
Kim, SH ;
Irving, J ;
Beresten, S ;
Ellis, NA ;
Campisi, J .
JOURNAL OF CELL BIOLOGY, 2001, 153 (02) :367-380
[3]   Reciprocal "flipping" underlies substrate recognition and catalytic activation by the human 8-oxo-guanine DNA glycosylase [J].
Bjorås, M ;
Seeberg, E ;
Luna, L ;
Pearl, LH ;
Barrett, TE .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 317 (02) :171-177
[4]   Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites [J].
Bjoras, M ;
Luna, L ;
Johnson, B ;
Hoff, E ;
Haug, T ;
Rognes, T ;
Seeberg, E .
EMBO JOURNAL, 1997, 16 (20) :6314-6322
[5]  
Blons H, 1999, MOL CARCINOGEN, V26, P254
[6]  
Bode J, 2000, J CELL BIOCHEM, P3
[7]   FORMAMIDOPYRIMIDINE-DNA GLYCOSYLASE OF ESCHERICHIA-COLI - CLONING AND SEQUENCING OF THE FPG STRUCTURAL GENE AND OVERPRODUCTION OF THE PROTEIN [J].
BOITEUX, S ;
OCONNOR, TR ;
LAVAL, J .
EMBO JOURNAL, 1987, 6 (10) :3177-3183
[8]   Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA [J].
Bruner, SD ;
Norman, DPG ;
Verdine, GL .
NATURE, 2000, 403 (6772) :859-866
[9]   Phosphorylation of the replication protein A large subunit in the Saccharomyces cerevisiae checkpoint response [J].
Brush, GS ;
Kelly, TJ .
NUCLEIC ACIDS RESEARCH, 2000, 28 (19) :3725-3732
[10]  
CHENG KC, 1992, J BIOL CHEM, V267, P166