Electrophysiological characterization of voltage-gated K+ currents in cerebellar basket and Purkinje cells:: Kv1 and Kv3 channel subfamilies are present in basket cell nerve terminals

被引:104
作者
Southan, AP [1 ]
Robertson, B [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Biochem, Electrophysiol Grp, London SW7 2AY, England
基金
英国惠康基金;
关键词
potassium channels; cerebellum; synapse; basket cell; electrophysiology; mouse;
D O I
10.1523/JNEUROSCI.20-01-00114.2000
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
To understand the processes underlying fast synaptic transmission in the mammalian CNS, we must have detailed knowledge of the identity, location, and physiology of the ion channels in the neuronal membrane. From labeling studies we can get clues regarding the distribution of ion channels, but electrophysiological methods are required to determine the importance of each ion channel in CNS transmission. Dendrotoxin-sensitive potassium channel subunits are highly concentrated in cerebellar basket cell nerve terminals, and we have previously shown that they are responsible for a significant fraction of the voltage-gated potassium current in this region. Here, we further investigate the characteristics and pharmacology of the voltage-dependent potassium currents in these inhibitory nerve terminals and compare these observations with those obtained from somatic recordings in basket and Purkinje cell soma regions. We find that alpha-DTX blocks basket cell nerve terminal currents and not somatic currents, and the IC50 for alpha-DTX in basket cell terminals is 3.2 nM. There are at least two distinct types of potassium currents in the nerve terminal, a DTX-sensitive low-threshold component, and a second component that activates at much more positive voltages. Pharmacological experiments also reveal that nerve terminal potassium currents are also markedly reduced by 4-AP and TEA, with both high-sensitivity (micromolar) and low-sensitivity (millimolar) components present. We suggest that basket cell nerve terminals have potassium channels from both the Kv1 and Kv3 subfamilies, whereas somatic currents in basket cell and Purkinje cell bodies are more homogeneous.
引用
收藏
页码:114 / 122
页数:9
相关论文
共 44 条
[1]   A potassium channel mutation in neonatal human epilepsy [J].
Biervert, C ;
Schroeder, BC ;
Kubisch, C ;
Berkovic, SF ;
Propping, P ;
Jentsch, TJ ;
Steinlein, OK .
SCIENCE, 1998, 279 (5349) :403-406
[2]  
Brew HM, 1995, J NEUROSCI, V15, P8011
[3]   EPISODIC ATAXIA MYOKYMIA SYNDROME IS ASSOCIATED WITH POINT MUTATIONS IN THE HUMAN POTASSIUM CHANNEL GENE, KCNA1 [J].
BROWNE, DL ;
GANCHER, ST ;
NUTT, JG ;
BRUNT, ERP ;
SMITH, EA ;
KRAMER, P ;
LITT, M .
NATURE GENETICS, 1994, 8 (02) :136-140
[4]  
CHANDY KG, 1995, HDB RECEPTORS CHANNE, P1
[5]  
CHRISTIE MJ, 1990, NEURON, V2, P405
[6]   Molecular diversity of K+ channels [J].
Coetzee, WA ;
Amarillo, Y ;
Chiu, J ;
Chow, A ;
Lau, D ;
McCormack, T ;
Moreno, H ;
Nadal, MS ;
Ozaita, A ;
Pountney, D ;
Saganich, M ;
Vega-Saenz de Miera, E ;
Rudy, B .
MOLECULAR AND FUNCTIONAL DIVERSITY OF ION CHANNELS AND RECEPTORS, 1999, 868 :233-285
[7]   Ion channel genes and human neurological disease: Recent progress, prospects, and challenges [J].
Cooper, EC ;
Jan, LY .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (09) :4759-4766
[8]   DIRECT PATCH RECORDING FROM IDENTIFIED PRESYNAPTIC TERMINALS MEDIATING GLUTAMATERGIC EPSCS IN THE RAT CNS, IN-VITRO [J].
FORSYTHE, ID .
JOURNAL OF PHYSIOLOGY-LONDON, 1994, 479 (03) :381-387
[9]  
GAHWILER BH, 1989, J PHYSIOL-LONDON, V417, P105
[10]   PURIFICATION AND CHARACTERIZATION OF 3 INHIBITORS OF VOLTAGE-DEPENDENT K+ CHANNELS FROM LEIURUS-QUINQUESTRIATUS VAR HEBRAEUS VENOM [J].
GARCIA, ML ;
GARCIACALVO, M ;
HIDALGO, P ;
LEE, A ;
MACKINNON, R .
BIOCHEMISTRY, 1994, 33 (22) :6834-6839