Differential loss of striatal projection systems in Huntington's disease: a quantitative immunohistochemical study

被引:155
作者
Deng, YP
Albin, RL
Penney, JB
Young, AB
Anderson, KD
Reiner, A [1 ]
机构
[1] Univ Tennessee, Ctr Hlth Sci, Dept Anat & Neurobiol, Memphis, TN 38163 USA
[2] Regeneron Pharmaceut Inc, Tarrytown, NY 10591 USA
[3] Massachusetts Gen Hosp, Neurol Serv, Boston, MA 02114 USA
[4] Vet Adm Med Ctr, GRECC, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Dept Neurol, Ann Arbor, MI 48109 USA
关键词
neurodegeneration; Huntington's disease; striatum; pallidum; substantia nigra; substance P; enkephalin; glutamic acid decarboxylase; immunohistochemistry;
D O I
10.1016/j.jchemneu.2004.02.005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Prior studies suggest differences exist among striatal projection neuron types in their vulnerability to Huntington's disease (HD). In the present study, we immunolabeled the fibers and terminals of the four main types of striatal projection neuron in their target areas for substance P, enkephalin, or glutamic acid decarboxylase (GAD), and used computer-assisted image analysis to quantify the abundance of immumolabeled terminals in a large sample of HD cases ranging from grade 0 to grade 4 [J. Neuropathol. Exp. Neurol. 44 (1985) 559], normalized to labeling in control human brains. Our goal was to characterize the relative rates of loss of the two striatopallidal projection systems (to the internal versus the external pallidal segments) and the two striatonigral projections systems (to pars compacta versus pars reticulata). The findings for GAD and the two neuropeptides were similar-the striatal projection to the external pallidal segment was the most vulnerable, showing substantial loss by grade 1. Loss of fibers in both subdivisions of the substantia nigra was also already great by grade 1. By contrast, the loss in the striatal projection system to the internal segment of globus pallidus proceeded more gradually. By grade 4 of HD, however, profound loss in all projection systems was apparent. These findings support the notion that the striatal neurons preferentially projecting to the internal pallidal segment are, in fact, less vulnerable in HD than are the other striatal projection neuron types. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:143 / 164
页数:22
相关论文
共 118 条
[1]   ENDOGENOUS OPIOIDS - BIOLOGY AND FUNCTION [J].
AKIL, H ;
WATSON, SJ ;
YOUNG, E ;
LEWIS, ME ;
KHACHATURIAN, H ;
WALKER, JM .
ANNUAL REVIEW OF NEUROSCIENCE, 1984, 7 :223-255
[2]   ABNORMALITIES OF STRIATAL PROJECTION NEURONS AND N-METHYL-D-ASPARTATE RECEPTORS IN PRESYMPTOMATIC HUNTINGTONS-DISEASE [J].
ALBIN, RL ;
YOUNG, AB ;
PENNEY, JB ;
HANDELIN, B ;
BALFOUR, R ;
ANDERSON, KD ;
MARKEL, DS ;
TOURTELLOTTE, WW ;
REINER, A .
NEW ENGLAND JOURNAL OF MEDICINE, 1990, 322 (18) :1293-1298
[3]   PREFERENTIAL LOSS OF STRIATO-EXTERNAL PALLIDAL PROJECTION NEURONS IN PRESYMPTOMATIC HUNTINGTONS-DISEASE [J].
ALBIN, RL ;
REINER, A ;
ANDERSON, KD ;
DURE, LS ;
HANDELIN, B ;
BALFOUR, R ;
WHETSELL, WO ;
PENNEY, JB ;
YOUNG, AB .
ANNALS OF NEUROLOGY, 1992, 31 (04) :425-430
[4]   THE FUNCTIONAL-ANATOMY OF BASAL GANGLIA DISORDERS [J].
ALBIN, RL ;
YOUNG, AB ;
PENNEY, JB .
TRENDS IN NEUROSCIENCES, 1989, 12 (10) :366-375
[5]   STRIATAL AND NIGRAL NEURON SUBPOPULATIONS IN RIGID HUNTINGTONS-DISEASE - IMPLICATIONS FOR THE FUNCTIONAL-ANATOMY OF CHOREA AND RIGIDITY-AKINESIA [J].
ALBIN, RL ;
REINER, A ;
ANDERSON, KD ;
PENNEY, JB ;
YOUNG, AB .
ANNALS OF NEUROLOGY, 1990, 27 (04) :357-365
[6]   PREPROENKEPHALIN MESSENGER-RNA CONTAINING NEURONS IN STRIATUM OF PATIENTS WITH SYMPTOMATIC AND PRESYMPTOMATIC HUNTINGTONS-DISEASE - AN INSITU HYBRIDIZATION STUDY [J].
ALBIN, RL ;
QIN, Y ;
YOUNG, AB ;
PENNEY, JB ;
CHESSELET, MF .
ANNALS OF NEUROLOGY, 1991, 30 (04) :542-549
[7]   EXTENSIVE COOCCURRENCE OF SUBSTANCE-P AND DYNORPHIN IN STRIATAL PROJECTION NEURONS - AN EVOLUTIONARILY CONSERVED FEATURE OF BASAL GANGLIA ORGANIZATION [J].
ANDERSON, KD ;
REINER, A .
JOURNAL OF COMPARATIVE NEUROLOGY, 1990, 295 (03) :339-369
[8]   Striatal glucose metabolism and dopamine D-2 receptor binding in asymptomatic gene carriers and patients with Huntington's disease [J].
Antonini, A ;
Leenders, KL ;
Spiegel, R ;
Meier, D ;
Vontobel, P ;
WeigellWeber, M ;
SanchezPernaute, R ;
deYebenez, JG ;
Boesiger, P ;
Weindl, A ;
Maguire, RP .
BRAIN, 1996, 119 :2085-2095
[9]   Are there multiple pathways in the pathogenesis of Huntington's disease? [J].
Aronin, N ;
Kim, M ;
Laforet, G ;
DiFiglia, M .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES, 1999, 354 (1386) :995-1003
[10]   DISTRIBUTION AND MORPHOLOGICAL-CHARACTERISTICS OF DOPAMINE-IMMUNOREACTIVE NEURONS IN THE MIDBRAIN OF THE SQUIRREL-MONKEY (SAIMIRI-SCIUREUS) [J].
ARSENAULT, MY ;
PARENT, A ;
SEGUELA, P ;
DESCARRIES, L .
JOURNAL OF COMPARATIVE NEUROLOGY, 1988, 267 (04) :489-506