Using neural networks to model conditional multivariate densities

被引:64
作者
Williams, PM
机构
[1] Sch. of Cogn. and Computing Sciences, University of Sussex, Falmer
关键词
D O I
10.1162/neco.1996.8.4.843
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neural network outputs are interpreted as parameters of statistical distributions. This allows us to fit conditional distributions in which the parameters depend on the inputs to the network. We exploit this in modeling multivariate data, including the univariate case, in which there may be input-dependent (e.g., time-dependent) correlations between output components. This provides a novel way of modeling conditional correlation that extends existing techniques for determining input-dependent (local) error bars.
引用
收藏
页码:843 / 854
页数:12
相关论文
共 17 条
  • [1] [Anonymous], 1958, INTRO MULTIVARIATE S
  • [2] Bishop C. M., 1994, Tech. Rep. NCRG/4288
  • [3] CURVATURE-DRIVEN SMOOTHING - A LEARNING ALGORITHM FOR FEEDFORWARD NETWORKS
    BISHOP, CM
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1993, 4 (05): : 882 - 884
  • [4] Bridle J.S., 1990, NEUROCOMPUTING, P227, DOI DOI 10.1007/978-3-642-76153-9_28
  • [5] Buntine W. L., 1991, Complex Systems, V5, P603
  • [6] Flannery B.P., 1992, NUMERICAL RECIPES C
  • [7] Ghahramani Z., 1994, Advances in Neural Information Processing Systems, V6, P120
  • [8] Golub G, 2013, Matrix Computations, V4th
  • [9] Horn R A., 2012, Matrix Analysis, V2nd edn, DOI 10.1017/CBO9780511810817
  • [10] Adaptive Mixtures of Local Experts
    Jacobs, Robert A.
    Jordan, Michael I.
    Nowlan, Steven J.
    Hinton, Geoffrey E.
    [J]. NEURAL COMPUTATION, 1991, 3 (01) : 79 - 87