Characterization of heterologously produced carbonic anhydrase from Methanosarcina thermophila

被引:56
作者
Alber, BE
Ferry, JG
机构
[1] PENN STATE UNIV,DEPT BIOCHEM & MOLEC BIOL,UNIVERSITY PK,PA 16802
[2] VIRGINIA POLYTECH INST & STATE UNIV,DEPT BIOCHEM & ANAEROB MICROBIOL,BLACKSBURG,VA 24061
关键词
D O I
10.1128/jb.178.11.3270-3274.1996
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The gene encoding carbonic anhydrase from Methanosarcina thermophila was hyperexpressed in Escherichia coli, and the heterologously produced enzyme was purified 14-fold to apparent homogeneity. The enzyme purified from E. coli has properties (specific activity, inhibitor sensitivity, and thermostability) similar to those of the authentic enzyme isolated from M. thermophila; however, a discrepancy in molecular mass suggests that the carbonic anhydrase is posttranslationally modified in either E. coli or M. thermophila. Both the authentic and heterologously produced enzymes were stable to heating at 55 degrees C for 15 min but were inactivated at higher temperatures, No esterase activity was detected with p-nitrophenylacetate as the substrate, Plasma emission spectroscopy revealed approximately 0.6 Zn per subunit. As judged from the estimated native molecular mass, the enzyme is either a trimer or a tetramer. Western blot (immunoblot) analysis of cell extract proteins from M. thermophila indicates that the levels of carbonic anhydrase are regulated in response to the growth substrate, with protein levels higher in acetate than in methanol- or trimethylamine-grown cells.
引用
收藏
页码:3270 / 3274
页数:5
相关论文
共 42 条
[1]   A CARBONIC-ANHYDRASE FROM THE ARCHAEON METHANOSARCINA-THERMOPHILA [J].
ALBER, BE ;
FERRY, JG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (15) :6909-6913
[2]  
ARMSTRONG JM, 1966, J BIOL CHEM, V241, P5137
[3]   METAL-FREE DIALYSIS TUBING [J].
AULD, DS .
METHODS IN ENZYMOLOGY, 1988, 158 :13-14
[4]   THE ROLE OF CARBONIC-ANHYDRASE IN PHOTOSYNTHESIS [J].
BADGER, MR ;
PRICE, GD .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1994, 45 :369-392
[5]   COBALT(II) AS A PROBE OF THE STRUCTURE AND FUNCTION OF CARBONIC-ANHYDRASE [J].
BERTINI, I ;
LUCHINAT, C .
ACCOUNTS OF CHEMICAL RESEARCH, 1983, 16 (08) :272-279
[6]  
Boone David R., 1993, P35
[7]   STRUCTURE DETERMINATION OF MURINE MITOCHONDRIAL CARBONIC-ANHYDRASE-V AT 2.45-ANGSTROM RESOLUTION - IMPLICATIONS FOR CATALYTIC PROTON-TRANSFER AND INHIBITOR DESIGN [J].
BORIACKSJODIN, PA ;
HECK, RW ;
LAIPIS, PJ ;
SILVERMAN, DN ;
CHRISTIANSON, DW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (24) :10949-10953
[8]   SPINACH CARBONIC-ANHYDRASE - INVESTIGATION OF THE ZINC-BINDING LIGANDS BY SITE-DIRECTED MUTAGENESIS, ELEMENTAL ANALYSIS, AND EXAFS [J].
BRACEY, MH ;
CHRISTIANSEN, J ;
TOVAR, P ;
CRAMER, SP ;
BARTLETT, SG .
BIOCHEMISTRY, 1994, 33 (44) :13126-13131
[9]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[10]   MOLECULAR CHARACTERIZATION OF THE CAI OPERON NECESSARY FOR CARNITINE METABOLISM IN ESCHERICHIA-COLI [J].
EICHLER, K ;
BOURGIS, F ;
BUCHET, A ;
KLEBER, HP ;
MANDRANDBERTHELOT, MA .
MOLECULAR MICROBIOLOGY, 1994, 13 (05) :775-786