Weyl function and spectral properties of self-adjoint extensions

被引:67
作者
Brasche, JF [1 ]
Malamud, M
Neidhardt, H
机构
[1] Chalmers Univ Technol, Inst Matemat, S-41296 Gothenburg, Sweden
[2] Univ Gothenburg, Inst Matemat, S-41296 Gothenburg, Sweden
[3] Donetsk State Univ, Dept Math, UA-340055 Donetsk, Ukraine
[4] WIAS Berlin, D-10117 Berlin, Germany
关键词
D O I
10.1007/BF01255563
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize the spectra of self-adjoint extensions of a symmetric operator with equal deficiency indices in terms of boundary values of their Weyl functions. A complete description is obtained for the point and absolutely continuous spectrum while for the singular continuous spectrum additional assumptions are needed. The results are illustrated by examples.
引用
收藏
页码:264 / 289
页数:26
相关论文
共 31 条
[1]  
Achieser N. I., 1975, THEORIE LINEAREN OPE
[2]   On inverse spectral theory for self-adjoint extensions: Mixed types of spectra [J].
Albeverio, S ;
Brasche, J ;
Neidhardt, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 154 (01) :130-173
[3]  
[Anonymous], GOTTINGER NACHRICHTE
[4]  
[Anonymous], 1910, GOTT NACHR
[5]   ON A PROBLEM OF WEYL IN THE THEORY OF SINGULAR STURM-LIOUVILLE EQUATIONS [J].
ARONSZAJN, N .
AMERICAN JOURNAL OF MATHEMATICS, 1957, 79 (03) :597-610
[6]  
Aronszajn N., 1956, J ANAL MATH, V5, P321, DOI DOI 10.1007/BF02937349
[7]  
Berezanskii J.M., 1968, EXPANSION EIGENFUNCT
[8]   ON THE ABSOLUTELY CONTINUOUS-SPECTRUM OF SELF-ADJOINT EXTENSIONS [J].
BRASCHE, J ;
NEIDHARDT, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 131 (02) :364-385
[9]  
Brasche J, 1996, MATH Z, V222, P533
[10]   ON THE POINT SPECTRUM OF SELF-ADJOINT EXTENSIONS [J].
BRASCHE, J ;
NEIDHARDT, H ;
WEIDMANN, J .
MATHEMATISCHE ZEITSCHRIFT, 1993, 214 (02) :343-355