The role of nuclear cap binding protein Cbc1p of yeast in mRNA termination and degradation

被引:66
作者
Das, B
Guo, ZJ
Russo, P
Chartrand, P
Sherman, F
机构
[1] Univ Rochester, Sch Med, Dept Biochem & Biophys, Rochester, NY 14642 USA
[2] Yeshiva Univ Albert Einstein Coll Med, Inst Mol Med, Bronx, NY 10461 USA
[3] Cornell Univ, Dept Plant Pathol, Ithaca, NY 14853 USA
关键词
D O I
10.1128/MCB.20.8.2827-2838.2000
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The cyc1-512 mutation in Saccharomyces cerevisiae causes a 90% reduction in the level of iso-1-cytochrome c because of the lack of a proper 3'-end-forming signal, resulting in low levels of eight aberrantly long cyc1-512 mRNAs which differ in length at their 3' termini, cyc1-512 can be suppressed by deletion of either of the nonessential genes CBC1 and CBC2, which encode the CBP80 and CBP20 subunits of the nuclear cap binding complex, respectively, or by deletion of the nonessential gene UPF1, which encodes a major component of the mRNA surveillance complex. The upf1-Delta deletion suppressed the cyc1-512 defect by diminishing degradation of the longer subset of cyc1-512 mRNAs, suggesting that downstream elements or structures occurred in the extended 3' region, similar to the downstream elements exposed by transcripts bearing premature nonsense mutations. On the other hand, suppression of cyc1-512 defects by cbc1-Delta occurred by two different mechanisms, The levels of the shorter cyc1-512 transcripts were enhanced in the cbc1-Delta mutants by promoting 3'-end formation at otherwise-weak sites, whereas the levels of the longer cyc1-512 transcripts, as well as of all mRNAs, were slightly enhanced by diminishing degradation. Furthermore, cbc1-Delta greatly suppressed the degradation of mRNAs and other phenotypes of a rat7-1 strain which is defective in mRNA export. We suggest that Cbc1p defines a novel degradation pathway that acts on mRNAs partially retained in nuclei.
引用
收藏
页码:2827 / 2838
页数:12
相关论文
共 93 条
[1]   A METHOD FOR GENE DISRUPTION THAT ALLOWS REPEATED USE OF URA3 SELECTION IN THE CONSTRUCTION OF MULTIPLY DISRUPTED YEAST STRAINS [J].
ALANI, E ;
CAO, L ;
KLECKNER, N .
GENETICS, 1987, 116 (04) :541-545
[2]   ISOLATION AND CHARACTERIZATION OF RAT1 - AN ESSENTIAL GENE OF SACCHAROMYCES-CEREVISIAE REQUIRED FOR THE EFFICIENT NUCLEOCYTOPLASMIC TRAFFICKING OF MESSENGER-RNA [J].
AMBERG, DC ;
GOLDSTEIN, AL ;
COLE, CN .
GENES & DEVELOPMENT, 1992, 6 (07) :1173-1189
[3]   Relationship between yeast polyribosomes and Upf proteins required for nonsense mRNA decay [J].
Atkin, AL ;
Schenkman, LR ;
Eastham, M ;
Dahlseid, JN ;
Lelivelt, MJ ;
Culbertson, MR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (35) :22163-22172
[4]  
ATKIN AL, 1995, MOL BIOL CELL, V6, P611
[5]   EVIDENCE TO IMPLICATE TRANSLATION BY RIBOSOMES IN THE MECHANISM BY WHICH NONSENSE CODONS REDUCE THE NUCLEAR-LEVEL OF HUMAN TRIOSEPHOSPHATE ISOMERASE MESSENGER-RNA [J].
BELGRADER, P ;
CHENG, J ;
MAQUAT, LE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (02) :482-486
[6]   Rrp6p, the yeast homologue of the human PM-Scl 100-kDa autoantigen, is essential for efficient 5.8 S rRNA 3′ end formation [J].
Briggs, MW ;
Burkard, KTD ;
Butler, JS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (21) :13255-13263
[7]   A nuclear 3′-5′ exonuclease involved in mRNA degradation interacts with poly(A) polymerase and the hnRNA protein Npl3p [J].
Burkard, KTD ;
Butler, JS .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (02) :604-616
[8]  
Cali BM, 1999, GENETICS, V151, P605
[9]   Mechanisms and control of mRNA turnover in Saccharomyces cerevisiae [J].
Caponigro, G ;
Parker, R .
MICROBIOLOGICAL REVIEWS, 1996, 60 (01) :233-+
[10]   A specific RNA-protein interaction at yeast polyadenylation efficiency elements [J].
Chen, SX ;
Hyman, LE .
NUCLEIC ACIDS RESEARCH, 1998, 26 (21) :4965-4974