Engineering of Synthetic Mammalian Gene Networks

被引:54
作者
Weber, Wilfried [1 ]
Fussenegger, Martin [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Biosyst Sci & Engn, CH-4058 Basel, Switzerland
来源
CHEMISTRY & BIOLOGY | 2009年 / 16卷 / 03期
基金
瑞士国家科学基金会;
关键词
CELL-CELL COMMUNICATION; TRANSGENE EXPRESSION; ESCHERICHIA-COLI; TRANSCRIPTIONAL ACTIVATION; SIGNALING ELEMENTS; REGULATION SYSTEMS; TIGHT CONTROL; SWITCH; HETERODIMERIZATION; CONSTRUCTION;
D O I
10.1016/j.chembiol.2009.02.005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Synthetic biology, the science of engineering complex biological systems with novel functions, is increasingly fascinating researchers across disciplines who gather to design functional biological assemblies in a rational and systematic manner. Although initial success stories were based on reprogramming prokaryotic and lower eukaryotic cells, the design of synthetic mammalian gene circuits is becoming increasingly popular because it promises to foster novel therapeutic opportunities in the not-so-distant future. Here, we discuss the latest generation of mammalian synthetic biology devices assembled to form complex synthetic gene networks, such as regulatory cascades, logic evaluators, hysteretic circuits, epigenetic toggle switches, time-keeping components, drug discovery tools, and "cell phone" units. We further highlight how such circuits could be interconnected to achieve higher-order control networks such as synthetic hormone-like communication systems in animals or synthetic ecosystems with dynamic interspecies crosstalk.
引用
收藏
页码:287 / 297
页数:11
相关论文
共 67 条
[1]   Mass spectrometry-based proteomics [J].
Aebersold, R ;
Mann, M .
NATURE, 2003, 422 (6928) :198-207
[2]   Tuning genetic control through promoter engineering [J].
Alper, H ;
Fischer, C ;
Nevoigt, E ;
Stephanopoulos, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (36) :12678-12683
[3]   A synthetic Escherichia coli predator-prey ecosystem [J].
Balagadde, Frederick K. ;
Song, Hao ;
Ozaki, Jun ;
Collins, Cynthia H. ;
Barnet, Matthew ;
Arnold, Frances H. ;
Quake, Stephen R. ;
You, Lingchong .
MOLECULAR SYSTEMS BIOLOGY, 2008, 4 (1)
[4]   A synthetic multicellular system for programmed pattern formation [J].
Basu, S ;
Gerchman, Y ;
Collins, CH ;
Arnold, FH ;
Weiss, R .
NATURE, 2005, 434 (7037) :1130-1134
[5]   Controlling protein association and subcellular localization with a synthetic ligand that induces heterodimerization of proteins [J].
Belshaw, PJ ;
Ho, SN ;
Crabtree, GR ;
Schreiber, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (10) :4604-4607
[6]   Synthetic biology [J].
Benner, SA ;
Sismour, AM .
NATURE REVIEWS GENETICS, 2005, 6 (07) :533-543
[7]   Design of artificial cell-cell communication using gene and metabolic networks [J].
Bulter, T ;
Lee, SG ;
Woirl, WWC ;
Fung, E ;
Connor, MR ;
Liao, JC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (08) :2299-2304
[8]   Artificial cell-cell communication in yeast Saccharomyces cerevisiae using signaling elements from Arabidopsis thaliana [J].
Chen, MT ;
Weiss, R .
NATURE BIOTECHNOLOGY, 2005, 23 (12) :1551-1555
[9]   Enhancing the Reliability and Throughput of Neurosphere Culture on Hydrogel Microwell Arrays [J].
Cordey, Myriam ;
Limacher, Monika ;
Kobel, Stefan ;
Taylor, Verdon ;
Lutolf, Matthias P. .
STEM CELLS, 2008, 26 (10) :2586-2594
[10]   A tunable genetic switch based on RNAi and repressor proteins for regulating gene expression in mammalian cells [J].
Deans, Tara L. ;
Cantor, Charles R. ;
Collins, James J. .
CELL, 2007, 130 (02) :363-372