On estimating linear relationships when both variables are subject to heteroscedastic measurement errors

被引:56
作者
Cheng, Chi-Lun [1 ]
Riu, Jordi
机构
[1] Acad Sinica, Inst Stat Sci, Taipei 115, Taiwan
[2] Univ Rovira & Virgili, Dept Analyt & Organ Chem, Tarragona 43007, Catalonia, Spain
关键词
generalized least squares; heteroscedastic measurement error; large-sample theory; maximum likelihood estimation; measurement error model; method-of-moments estimate;
D O I
10.1198/004017006000000237
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article discusses point estimation of the parameters in a linear measurement error (errors in variables) model when the variances in the measurement errors on both axes vary between observations. A compendium of existing and new regression methods is presented. Application of these methods to real data cases shows that the coefficients of the regression lines depend on the method selected. Guidelines for choosing a suitable regression method are provided.
引用
收藏
页码:511 / 519
页数:9
相关论文
共 23 条
[1]  
Adcock R., 1877, ANALYST, V4, P183
[2]  
Bartholomew D. J., 1999, LATENT VARIABLE MODE
[4]   ODRPACK - SOFTWARE FOR WEIGHTED ORTHOGONAL DISTANCE REGRESSION [J].
BOGGS, PT ;
DONALDSON, JR ;
BYRD, RH ;
SCHNABEL, RB .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1989, 15 (04) :348-364
[5]   The use and misuse of orthogonal regression in linear errors-in-variables models [J].
Carroll, RJ ;
Ruppert, D .
AMERICAN STATISTICIAN, 1996, 50 (01) :1-6
[6]  
Carroll RJ., 1995, MEASUREMENT ERROR NO
[7]  
CHAN LK, 1979, J R STAT SOC B, V41, P263
[8]  
Cheng CL, 1999, STAT REGRESSION MEAS
[9]   Prediction intervals in linear regression taking into account errors on both axes [J].
del Río, FJ ;
Riu, J ;
Rius, FX .
JOURNAL OF CHEMOMETRICS, 2001, 15 (10) :773-788
[10]  
Fuller W. A., 2009, Measurement error models