Is Hamming distance only way for matching binary image feature descriptors?

被引:10
作者
Bostanci, E. [1 ]
机构
[1] Ankara Univ, Dept Comp Engn, TR-06100 Ankara, Turkey
关键词
D O I
10.1049/el.2014.0773
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Brute force matching of binary image feature descriptors is conventionally performed using the Hamming distance. The use of alternative metrics is assessed in order to see whether they can produce feature correspondences that yield more accurate homography matrices. Two statistical tests, namely analysis of variance (ANOVA) and McNemar's test were employed for the evaluation. Results show that Jackard-Needham and Dice metrics can display better performance for some descriptors. Yet, these performance differences were not found to be statistically significant.
引用
收藏
页码:806 / 807
页数:2
相关论文
共 8 条
[1]   An Evaluation of Classification Algorithms Using Mc Nemar's Test [J].
Bostanci, Betul ;
Bostanci, Erkan .
PROCEEDINGS OF SEVENTH INTERNATIONAL CONFERENCE ON BIO-INSPIRED COMPUTING: THEORIES AND APPLICATIONS (BIC-TA 2012), VOL 1, 2013, 201 :15-26
[2]   Spatial Statistics of Image Features for Performance Comparison [J].
Bostanci, Erkan ;
Kanwal, Nadia ;
Clark, Adrian F. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (01) :153-162
[3]   BRIEF: Computing a Local Binary Descriptor Very Fast [J].
Calonder, Michael ;
Lepetit, Vincent ;
Oezuysal, Mustafa ;
Trzcinski, Tomasz ;
Strecha, Christoph ;
Fua, Pascal .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (07) :1281-1298
[4]  
Choi S., 2010, Journal on Systemics, Cybernetics and Informatics, V8, P43
[5]  
Leutenegger S, 2011, IEEE I CONF COMP VIS, P2548, DOI 10.1109/ICCV.2011.6126542
[6]  
Muja M., 2012, 2012 Canadian Conference on Computer and Robot Vision, P404, DOI 10.1109/CRV.2012.60
[7]  
Rublee E, 2011, IEEE I CONF COMP VIS, P2564, DOI 10.1109/ICCV.2011.6126544
[8]  
Warrens M.J., 2008, THESIS U LEIDEN