Adaptive mesh and geodesically sliced Schwarzschild spacetime in 3+1 dimensions

被引:40
作者
Brugmann, B
机构
[1] Max-Planck-Institut für Gravitationsphysik, Potsdam, 14473
来源
PHYSICAL REVIEW D | 1996年 / 54卷 / 12期
关键词
D O I
10.1103/PhysRevD.54.7361
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present the first results obtained with a (3+1)-dimensional adaptive mesh code in numerical general relativity. The adaptive mesh is used in conjunction with a standard ADM code for the evolution of a dynamically sliced Schwarzschild spacetime (geodesic slicing). We argue that the adaptive mesh is particularly natural in the context of general relativity, where apart from adaptive mesh refinement for numerical efficiency one may want to use the built in flexibility to do numerical relativity on coordinate patches.
引用
收藏
页码:7361 / 7372
页数:12
相关论文
共 30 条
[1]   TIME-SYMMETRICAL ADI AND CAUSAL RECONNECTION - STABLE NUMERICAL TECHNIQUES FOR HYPERBOLIC SYSTEMS ON MOVING GRIDS [J].
ALCUBIERRE, M ;
SCHUTZ, BF .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 112 (01) :44-77
[2]  
ALCUBIERRE M, 1992, PPROACHES NUMERICAL
[3]  
ALLEN G, 1995, GENERAL RELATIVITY
[4]   DYNAMICS OF APPARENT AND EVENT HORIZONS [J].
ANNINOS, P ;
BERNSTEIN, D ;
BRANDT, S ;
LIBSON, J ;
MASSO, J ;
SEIDEL, E ;
SMARR, L ;
SUEN, WM ;
WALKER, P .
PHYSICAL REVIEW LETTERS, 1995, 74 (05) :630-633
[5]   3-DIMENSIONAL NUMERICAL RELATIVITY - THE EVOLUTION OF BLACK-HOLES [J].
ANNINOS, P ;
CAMARDA, K ;
MASSO, J ;
SEIDEL, E ;
SUEN, WM ;
TOWNS, J .
PHYSICAL REVIEW D, 1995, 52 (04) :2059-2082
[6]   HORIZON BOUNDARY-CONDITION FOR BLACK-HOLE SPACETIMES [J].
ANNINOS, P ;
DAUES, G ;
MASSO, J ;
SEIDEL, E ;
SUEN, WM .
PHYSICAL REVIEW D, 1995, 51 (10) :5562-5578
[7]  
ANNINOS P, IN PRESS PHYS REV D
[8]  
[Anonymous], COMMUNICATION
[9]   Implementing an apparent-horizon finder in three dimensions [J].
Baumgarte, TW ;
Cook, GB ;
Scheel, MA ;
Shapiro, SL ;
Teukolsky, SA .
PHYSICAL REVIEW D, 1996, 54 (08) :4849-4857
[10]   ADAPTIVE MESH REFINEMENT FOR HYPERBOLIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
BERGER, MJ ;
OLIGER, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 53 (03) :484-512