On describing multivariate skewed distributions: a directional approach

被引:6
作者
Ferreira, Jose T. A. S.
Steel, Mark F. J.
机构
[1] Endeavour Capital Management, London WIK 2TJ, England
[2] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2006年 / 34卷 / 03期
关键词
Bayesian method; directional skewness; multivariate regression; prior elicitation; prior matching;
D O I
10.1002/cjs.5550340304
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Most multivariate measures of skewness in the literature measure the overall skewness of a distribution. These measures were designed for testing the hypothesis of distributional symmetry; their relevance for describing skewed distributions is less obvious. In this article, the authors consider the problem of characterizing the skewness of multivariate distributions. They define directional skewness as the skewness along a direction and analyze two parametric classes of skewed distributions using measures based on directional skewness. The analysis brings further insight into the classes, allowing for a more informed selection of classes of distributions for particular applications. The authors use the concept of directional skewness twice in the context of Bayesian linear regression under skewed error: first in the elicitation of a prior on the parameters of the error distribution, and then in the analysis of the skewness of the posterior distribution of the regression residuals.
引用
收藏
页码:411 / 429
页数:19
相关论文
共 24 条
[1]   MEASURING SKEWNESS WITH RESPECT TO THE MODE [J].
ARNOLD, BC ;
GROENEVELD, RA .
AMERICAN STATISTICIAN, 1995, 49 (01) :34-38
[2]   Skewed multivariate models related to hidden truncation and/or selective reporting [J].
Arnold B.C. ;
Beaver R.J. .
Test, 2002, 11 (1) :7-54
[3]   Statistical applications of the multivariate skew normal distribution [J].
Azzalini, A ;
Capitanio, A .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1999, 61 :579-602
[4]   The multivariate skew-normal distribution [J].
Azzalini, A ;
DallaValle, A .
BIOMETRIKA, 1996, 83 (04) :715-726
[5]  
AZZALINI A, 1985, SCAND J STAT, V12, P171
[6]  
Bowley A., 1920, STUDIES EC POLITICAL, V8
[7]  
CHARLIER CVL, 1905, ARCH MATH ASTRONOMI, V2
[8]  
Cook R.D., 1994, INTRO REGRESSION GRA
[9]  
EDGEWORTH FY, 1904, T CAMBRIDGE PHILOS S, P20
[10]   Benchmark priors for Bayesian model averaging [J].
Fernández, C ;
Ley, E ;
Steel, MFJ .
JOURNAL OF ECONOMETRICS, 2001, 100 (02) :381-427