Power-free poly(dimethylsiloxane) microfluidic devices for gold nanoparticle-based DNA analysis

被引:225
作者
Hosokawa, K
Sato, K
Ichikawa, N
Maeda, M
机构
[1] RIKEN, Bioengn LAb, Wako, Saitama 3510198, Japan
[2] AIST, Inst Mech Syst Engn, Tsukuba, Ibaraki 3058564, Japan
关键词
D O I
10.1039/b403930k
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
An extremely simple, power-free pumping method for poly( dimethylsiloxane) ( PDMS) microfluidic devices is presented. By exploiting the high gas solubility of PDMS, the energy for the pumping is pre-stored in the degassed bulk PDMS, therefore no additional structures other than channels and reservoirs are required. In a Y-shaped microchannel with cross section of 100 mum width X 25 mum height, this method has provided flow rate of 0.5-2 nL s(-1), corresponding to linear velocity of 0.2-0.8 mm s(-1), with good reproducibility. As an application of the power-free pumping, gold nanoparticle-based DNA analysis, which does not rely on the cross-linking mechanism between nanoparticles, has been implemented in a microchannel with three inlets. Target 15mer DNA has been easily and unambiguously discriminated from its single-base substituted mutant. Instead of colorimetric detection in a conventional microtube, an alternative detection technique suitable for microdevices has been discovered-observation of deposition on the PDMS surfaces. The channel layout enabled two simultaneous DNA analyses at the two interfaces between the three laminar streams.
引用
收藏
页码:181 / 185
页数:5
相关论文
共 29 条
[1]   PARTICLE-IMAGING TECHNIQUES FOR EXPERIMENTAL FLUID-MECHANICS [J].
ADRIAN, RJ .
ANNUAL REVIEW OF FLUID MECHANICS, 1991, 23 :261-304
[2]   Micro total analysis systems. 2. Analytical standard operations and applications [J].
Auroux, PA ;
Iossifidis, D ;
Reyes, DR ;
Manz, A .
ANALYTICAL CHEMISTRY, 2002, 74 (12) :2637-2652
[3]   Passively driven integrated microfluidic system for separation of motile sperm [J].
Cho, BS ;
Schuster, TG ;
Zhu, XY ;
Chang, D ;
Smith, GD ;
Takayama, S .
ANALYTICAL CHEMISTRY, 2003, 75 (07) :1671-1675
[4]  
CRANK J, 1973, MATH DIFFUSION, P47
[5]   Patterned delivery of immunoglobulins to surfaces using microfluidic networks [J].
Delamarche, E ;
Bernard, A ;
Schmid, H ;
Michel, B ;
Biebuyck, H .
SCIENCE, 1997, 276 (5313) :779-781
[6]   Rapid prototyping of microfluidic systems in poly(dimethylsiloxane) [J].
Duffy, DC ;
McDonald, JC ;
Schueller, OJA ;
Whitesides, GM .
ANALYTICAL CHEMISTRY, 1998, 70 (23) :4974-4984
[7]   Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles [J].
Elghanian, R ;
Storhoff, JJ ;
Mucic, RC ;
Letsinger, RL ;
Mirkin, CA .
SCIENCE, 1997, 277 (5329) :1078-1081
[8]   Fabrication of patterned multicomponent protein gradients and gradient arrays using microfluidic depletion [J].
Fosser, KA ;
Nuzzo, RG .
ANALYTICAL CHEMISTRY, 2003, 75 (21) :5775-5782
[9]   A picoliter-volume mixer for microfluidic analytical systems [J].
He, B ;
Burke, BJ ;
Zhang, X ;
Zhang, R ;
Regnier, FE .
ANALYTICAL CHEMISTRY, 2001, 73 (09) :1942-1947
[10]   Handling of picoliter liquid samples in a poly(dimethylsiloxane)-based microfluidic device [J].
Hosokawa, K ;
Fujii, T ;
Endo, I .
ANALYTICAL CHEMISTRY, 1999, 71 (20) :4781-4785