Gravitational instability in higher dimensions

被引:165
作者
Gibbons, G [1 ]
Hartnoll, SA [1 ]
机构
[1] Univ Cambridge, Ctr Math Sci, DAMTP, Cambridge CB3 0WA, England
来源
PHYSICAL REVIEW D | 2002年 / 66卷 / 06期
关键词
D O I
10.1103/PhysRevD.66.064024
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We explore a classical instability of spacetimes of dimension D>4. First, we consider static solutions: generalized black holes and brane world metrics. The dangerous mode is a tensor mode on an Einstein base manifold of dimension D-2. A criterion for instability is found for the generalized Schwarzschild, AdS-Schwarzschild and topological black hole spacetimes in terms of the Lichnerowicz spectrum on the base manifold. Secondly, we consider perturbations in time-dependent solutions: Generalized dS and AdS. Thirdly we show that, subject to the usual limitations of a linear analysis, any Ricci flat spacetime may be stabilized by embedding into a higher dimensional spacetime with cosmological constant. We apply our results to pure AdS black strings. Finally, we study the stability of higher dimensional "bubbles of nothing."
引用
收藏
页数:17
相关论文
共 45 条
  • [1] STABILITY OF GRAVITY WITH A COSMOLOGICAL CONSTANT
    ABBOTT, LF
    DESER, S
    [J]. NUCLEAR PHYSICS B, 1982, 195 (01) : 76 - 96
  • [2] Aharony O, 2002, J HIGH ENERGY PHYS
  • [3] Large N field theories, string theory and gravity
    Aharony, O
    Gubser, SS
    Maldacena, J
    Ooguri, H
    Oz, Y
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 323 (3-4): : 183 - 386
  • [4] ANDREWS GE, 1999, SPECIAL FUNCTIONS
  • [5] BALASUBRAMANIAN B, HEPTH0205290
  • [6] Topological black holes in anti-de Sitter space
    Birmingham, D
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1999, 16 (04) : 1197 - 1205
  • [7] BIRMINGHAM D, HEPTH0205246
  • [8] Inhomogeneous Einstein metrics on low-dimensional spheres and other low-dimensional spaces
    Bohm, C
    [J]. INVENTIONES MATHEMATICAE, 1998, 134 (01) : 145 - 176
  • [9] BOUCHER W, 1983, VERY EARLY UNIVERSE
  • [10] Brane-world black holes
    Chamblin, A
    Hawking, SW
    Reall, HS
    [J]. PHYSICAL REVIEW D, 2000, 61 (06):