Valine of the YVDD motif of Moloney murine leukemia virus reverse transcriptase: Role in the fidelity of DNA synthesis

被引:24
作者
Kaushik, N
Chowdhury, K
Pandey, VN
Modak, MJ
机构
[1] Univ Med & Dent New Jersey, New Jersey Med Sch, Newark, NJ 07103 USA
[2] Univ Med & Dent New Jersey, Grad Sch Biomed Sci, Dept Biochem & Mol Biol, Newark, NJ 07103 USA
关键词
D O I
10.1021/bi992223b
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The YXDD motif is highly conserved in the reverse transcriptase family. The variable X residue is occupied by valine and methionine in MuLV RT and HIV-1 RT, respectively. Previous studies have shown that Tyr 222, the Y residue of the YXDD motif in MuLV RT, constitutes a major component of the fidelity center of the enzyme [Kaushik, N., Singh, K., Alluru, I., and Modak, M. J. (1999) Biochemistry 38, 2617-2627], In this work, we present evidence that reverse transcriptases containing valine in the "X" position of the YXDD motif generally catalyze DNA synthesis with greater fidelity than those containing methionine or alanine. In the MuLV RT system, the two mutants V223M and V223A exhibited an overall reduced fidelity of DNA synthesis, specifically for RNA-templated reactions. Further analysis revealed that these mutants exhibit a higher efficiency of misinsertion on MS2 RNA than the wild-type enzyme for every mispair tested. However, unlike HIV-1 RT, the insensitivity of the wild-type MuLV RT to all four ddNTPs remained unchanged by mutation of V223 to Met or Ala. A 3D molecular model of the ternary complex of MuLV RT, template primer, and dNTP suggests that Val 223 along with its neighboring Tyr 222 stabilizes the substrate binding pocket via hydrophobic interactions with the dNTP substrate and template-primer.
引用
收藏
页码:5155 / 5165
页数:11
相关论文
共 68 条
[1]  
ARTS EJ, 1994, J BIOL CHEM, V269, P14672
[2]   DEOXYNUCLEOSIDE TRIPHOSPHATE AND PYROPHOSPHATE BINDING-SITES IN THE CATALYTICALLY COMPETENT TERNARY COMPLEX FOR THE POLYMERASE REACTION CATALYZED BY DNA-POLYMERASE-I (KLENOW FRAGMENT) [J].
ASTATKE, M ;
GRINDLEY, NDF ;
JOYCE, CM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (04) :1945-1954
[3]  
Ausubel F. M., 1999, SHORT PROTOCOLS MOL
[4]   Mutational studies of human immunodeficiency virus type 1 reverse transcriptase: The involvement of residues 183 and 184 in the fidelity of DNA synthesis [J].
Bakhanashvili, M ;
Avidan, O ;
Hizi, A .
FEBS LETTERS, 1996, 391 (03) :257-262
[5]   FIDELITY OF THE REVERSE-TRANSCRIPTASE OF HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-2 [J].
BAKHANASHVILI, M ;
HIZI, A .
FEBS LETTERS, 1992, 306 (2-3) :151-156
[6]   FIDELITY OF THE RNA-DEPENDENT DNA-SYNTHESIS EXHIBITED BY THE REVERSE TRANSCRIPTASES OF HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 AND TYPE-2 AND OF MURINE LEUKEMIA-VIRUS - MISPAIR EXTENSION FREQUENCIES [J].
BAKHANASHVILI, M ;
HIZI, A .
BIOCHEMISTRY, 1992, 31 (39) :9393-9398
[7]   THE FIDELITY OF THE REVERSE TRANSCRIPTASES OF HUMAN IMMUNODEFICIENCY VIRUSES AND MURINE LEUKEMIA-VIRUS, EXHIBITED BY THE MISPAIR EXTENSION FREQUENCIES, IS SEQUENCE DEPENDENT AND ENZYME RELATED [J].
BAKHANASHVILI, M ;
HIZI, A .
FEBS LETTERS, 1993, 319 (1-2) :201-205
[8]   VIRAL RNA-DEPENDENT DNA POLYMERASE - RNA-DEPENDENT DNA POLYMERASE IN VIRIONS OF RNA TUMOUR VIRUSES [J].
BALTIMORE, D .
NATURE, 1970, 226 (5252) :1209-+
[9]  
BASU A, 1988, J BIOL CHEM, V263, P1648
[10]  
BASU A, 1990, J BIOL CHEM, V265, P17162