O(N) models within the local potential approximation

被引:53
作者
Comellas, J
Travesset, A
机构
[1] Dept. d'Estructura Constituents M., Facultat de Física, Universitat de Barcelona, 08028 Barcelona, Catalonia, Diagonal
关键词
renormalization group; fixed points; critical exponents; large N;
D O I
10.1016/S0550-3213(97)00349-0
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Using the Wegner-Houghton equation, within the local potential approximation, we study critical properties of O(N) vector models. Fixed points, together with their critical exponents and eigenoperators, are obtained for a large set of values of N, including N = O and N --> infinity. Polchinski's equation is also treated. The peculiarities of the large N limit, where a line of Fixed Points at d = 2 + 2/n is present, are studied in detail. A derivation of the equation is presented together with its projection to zero-modes. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:539 / 564
页数:26
相关论文
共 33 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]  
[Anonymous], 1992, SMR
[3]   The effectiveness of the local potential approximation in the Wegner-Houghton renormalization group [J].
Aoki, KI ;
Morikawa, K ;
Souma, W ;
Sumi, JI ;
Terao, H .
PROGRESS OF THEORETICAL PHYSICS, 1996, 95 (02) :409-420
[4]  
BAGNULS C, 1997, J PHYS STUDIES, V1, P1
[5]   MONTE-CARLO RENORMALIZATION-GROUP STUDY OF THE 3-DIMENSIONAL ISING-MODEL [J].
BAILLIE, CF ;
GUPTA, R ;
HAWICK, KA ;
PAWLEY, GS .
PHYSICAL REVIEW B, 1992, 45 (18) :10438-10453
[6]   SCHEME INDEPENDENCE AND THE EXACT RENORMALIZATION-GROUP [J].
BALL, RD ;
HAAGENSEN, PE ;
LATORRE, JI ;
MORENO, E .
PHYSICS LETTERS B, 1995, 347 (1-2) :80-88
[7]   RENORMALIZABILITY OF EFFECTIVE SCALAR FIELD-THEORY [J].
BALL, RD ;
THORNE, RS .
ANNALS OF PHYSICS, 1994, 236 (01) :117-204
[8]   Finite size effects on measures of critical exponents in d=3 O(N) models [J].
Ballesteros, HG ;
Fernandez, LA ;
MartinMayor, V ;
Sudupe, AM .
PHYSICS LETTERS B, 1996, 387 (01) :125-131
[9]   SPONTANEOUS BREAKING OF SCALE-INVARIANCE AND THE ULTRAVIOLET FIXED-POINT IN O(N)-SYMMETRIC (PHI-36) THEORY [J].
BARDEEN, WA ;
MOSHE, M ;
BANDER, M .
PHYSICAL REVIEW LETTERS, 1984, 52 (14) :1188-1191
[10]   FINITE-LATTICE APPROXIMATIONS TO RENORMALIZATION GROUPS [J].
BELL, TL ;
WILSON, KG .
PHYSICAL REVIEW B, 1975, 11 (09) :3431-3444