Acetol (hydroxyacetone) and 1-butanol, model compounds of the aqueous fraction of biomass pyrolysis liquids (bio-oil), have been catalytically steam reformed in a microscale fixed-bed facility. Three Ni coprecipitated catalysts, with varying nickel content (23, 28 and 33% expressed as a Ni/(Ni + Al) relative atomic% of nickel), have been tested. Several parameters have been analysed: the reaction temperature, the catalyst weight/organic flow rate (W/m) ratio, and the effect of the nickel content. The temperatures studied were 550, 650 and 750 degrees C. At the experimental conditions tested, an increase in the reaction temperature resulted in greater carbon conversion to product gases in non-catalytic and catalytic steam reforming for both model compounds. The nickel content of the catalyst has a significant influence on the steam reforming of oxygenates. The best performance, in terms of H-2 yield, is obtained with the catalyst with 28% Ni content. For experiments carried out at space velocities around 30,000 h(-1) during 2 h,acetol showed a slightly higher carbon conversion to gas than butanol, though butanol depicted a more constant evolution of carbon conversion throughout. (C) 2008 Elsevier B.V. All rights reserved.